In regenerative medicine, human cord blood-derived multipotent mesenchymal stromal cells (CBMSCs) stand out for their biological peculiarities demonstrated in in vitro and in vivo preclinical studies. Here, we present our 9-year experience for the consistent isolation of CBMSCs. Although nearly one CB unit out of two retains the potential to give rise to MSC colonies, only 46% of them can be cultured till low passages (P≥4), but one-fourth of those reaches even higher passages (P≥8). Subsequent characterization for morphological, clonal, differentiation, and proliferation properties revealed two divergent CBMSC behaviors. In particular, a cumulative population doublings cut-off (CPD=15) was identified that undoubtedly distinguishes two growth curves, and different degrees of commitment toward osteogenesis were observed. These data clearly show the existence of at least two distinct CBMSC subsets: one mainly short-living and less proliferative (SL-CBMSCs), the other long-living, with higher growth rate, and, very importantly, with significantly (P≤0.01) longer telomere (LL-CBMSCs). Moreover, significant differences in the immunoprofile before seeding were found among CB units giving rise to LL-CBMSCs or SL-CBMSCs or showing no colony formation. Finally, all the aforementioned results provided a peculiar and useful set of parameters potentially predictive for CBMSC culture outcome.
Dissection of the cord blood stromal component reveals predictive parameters for culture outcome / M. Barilani, C. Lavazza, M. Vigano', T. Montemurro, V. Boldrin, V. Parazzi, E.G.A. Montelatici, M. Crosti, M. Moro, R. Giordano, L. Lazzari. - In: STEM CELLS AND DEVELOPMENT. - ISSN 1547-3287. - 24:1(2015 Jan 01), pp. 104-114. [10.1089/scd.2014.0160]
Dissection of the cord blood stromal component reveals predictive parameters for culture outcome
C. LavazzaSecondo
;M. Vigano';V. Boldrin;V. Parazzi;E.G.A. Montelatici;
2015
Abstract
In regenerative medicine, human cord blood-derived multipotent mesenchymal stromal cells (CBMSCs) stand out for their biological peculiarities demonstrated in in vitro and in vivo preclinical studies. Here, we present our 9-year experience for the consistent isolation of CBMSCs. Although nearly one CB unit out of two retains the potential to give rise to MSC colonies, only 46% of them can be cultured till low passages (P≥4), but one-fourth of those reaches even higher passages (P≥8). Subsequent characterization for morphological, clonal, differentiation, and proliferation properties revealed two divergent CBMSC behaviors. In particular, a cumulative population doublings cut-off (CPD=15) was identified that undoubtedly distinguishes two growth curves, and different degrees of commitment toward osteogenesis were observed. These data clearly show the existence of at least two distinct CBMSC subsets: one mainly short-living and less proliferative (SL-CBMSCs), the other long-living, with higher growth rate, and, very importantly, with significantly (P≤0.01) longer telomere (LL-CBMSCs). Moreover, significant differences in the immunoprofile before seeding were found among CB units giving rise to LL-CBMSCs or SL-CBMSCs or showing no colony formation. Finally, all the aforementioned results provided a peculiar and useful set of parameters potentially predictive for CBMSC culture outcome.File | Dimensione | Formato | |
---|---|---|---|
scd.2014.0160.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
687.51 kB
Formato
Adobe PDF
|
687.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.