We present a Lindenstrauss space with an extreme point that does not contain a subspace linearly isometric to c. This example disproves a result stated by Zippin in a paper published in 1969 and it shows that some classical characterizations of polyhedral Lindenstrauss spaces, based on Zippin’s result, are false, whereas some others remain unproven; then we provide a correct proof for those characterizations. Finally, we also disprove a characterization of polyhedral Lindenstrauss spaces given by Lazar, in terms of the compact norm-preserving extension of compact operators, and we give an equivalent condition for a Banach space X to satisfy this property.

Rethinking polyhedrality for Lindenstrauss spaces / E. Casini, E. Miglierina, L. Piasecki, L. Vesely. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 216:1(2016 Oct), pp. 355-369. [10.1007/s11856-016-1412-8]

Rethinking polyhedrality for Lindenstrauss spaces

L. Vesely
2016

Abstract

We present a Lindenstrauss space with an extreme point that does not contain a subspace linearly isometric to c. This example disproves a result stated by Zippin in a paper published in 1969 and it shows that some classical characterizations of polyhedral Lindenstrauss spaces, based on Zippin’s result, are false, whereas some others remain unproven; then we provide a correct proof for those characterizations. Finally, we also disprove a characterization of polyhedral Lindenstrauss spaces given by Lazar, in terms of the compact norm-preserving extension of compact operators, and we give an equivalent condition for a Banach space X to satisfy this property.
Settore MAT/05 - Analisi Matematica
ott-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
4711-work_BOZZE.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 170.45 kB
Formato Adobe PDF
170.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Casini2016_Article_RethinkingPolyhedralityForLind.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 221.03 kB
Formato Adobe PDF
221.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/466762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact