The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence.

The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells / S. Orecchioni, F. Reggiani, G. Talarico, P. Mancuso, A. Calleri, G. Gregato, V. Labanca, D.M. Noonan, K. Dallaglio, A. Albini, F. Bertolini. - In: INTERNATIONAL JOURNAL OF CANCER. - ISSN 0020-7136. - 136:6(2015 Mar 15), pp. E534-E544. [10.1002/ijc.29193]

The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells

F. Reggiani
Primo
;
2015

Abstract

The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence.
Angiogenesis; Breast cancer; Metformin; Phenformin; AMP-Activated Protein Kinases; Animals; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Electron Transport Complex I; Female; Humans; Metformin; Mice; Neoplasm Metastasis; Neovascularization, Pathologic; Phenformin; Phosphorylation; TOR Serine-Threonine Kinases; Tumor Microenvironment; Cancer Research; Oncology; Medicine (all)
Settore MED/06 - Oncologia Medica
15-mar-2015
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/466266
Citazioni
  • ???jsp.display-item.citation.pmc??? 61
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 107
social impact