In most clinical studies, the evaluation of the effect of a therapy and the impact of prognostic factors is based on relapse-free survival. Relapse free is a net survival, since it is interpreted as the relapsefree probability that would be observed if all patients experienced relapse sooner or later. Death without evidence of relapse prevents the subsequent observation of relapse, acting in a semi-competing risks framework. Relapse free survival is often estimated by standard regression models after censoring times to death. The association between relapse and death is thus accounted for. However, to better estimate relapse free survival, a bivariate distribution of times to events needs to be considered, for example by means of copula models. We concentrate here on the copula graphic estimator, for which a pertinent regression model has been developed. No direct parametric estimation of the regression coefficient for the covariates is available and the evaluation of the impact of covariates on relapse free survival is based on graphical representation for each covariate singularly. The advantage of this approach is based on the relationship between net survival, and crude cumulative incidences. Regression models can be fitted for the latter quantities and the estimates can be used to compute net survival through a copula structure. Our proposal is based on flexible regression transformation model on crude cumulative incidences based on pseudo-values. An overall view of the joint association among covariates and relapse free survival is obtained through Multiple Correspondence Analysis. Moreover cluster analysis on MCA coordinates was used to synthesize covariate patterns and to estimates the corresponding relapse free survival curve. This approach has been applied to a large “historical” case series of patients with breast cancer.
Estimating Relapse Free Survival as a Net Probability : Regression Models and Graphical Representation : An Application of a Large Breast Cancer Case Series / A. Orenti, E. Biganzoli, P. Boracchi. - In: INTERNATIONAL JOURNAL OF CANCER AND CLINICAL RESEARCH. - ISSN 2378-3419. - 3:6(2016 Aug 12).
Estimating Relapse Free Survival as a Net Probability : Regression Models and Graphical Representation : An Application of a Large Breast Cancer Case Series
A. OrentiPrimo
;E. Biganzoli
;P. BoracchiUltimo
2016
Abstract
In most clinical studies, the evaluation of the effect of a therapy and the impact of prognostic factors is based on relapse-free survival. Relapse free is a net survival, since it is interpreted as the relapsefree probability that would be observed if all patients experienced relapse sooner or later. Death without evidence of relapse prevents the subsequent observation of relapse, acting in a semi-competing risks framework. Relapse free survival is often estimated by standard regression models after censoring times to death. The association between relapse and death is thus accounted for. However, to better estimate relapse free survival, a bivariate distribution of times to events needs to be considered, for example by means of copula models. We concentrate here on the copula graphic estimator, for which a pertinent regression model has been developed. No direct parametric estimation of the regression coefficient for the covariates is available and the evaluation of the impact of covariates on relapse free survival is based on graphical representation for each covariate singularly. The advantage of this approach is based on the relationship between net survival, and crude cumulative incidences. Regression models can be fitted for the latter quantities and the estimates can be used to compute net survival through a copula structure. Our proposal is based on flexible regression transformation model on crude cumulative incidences based on pseudo-values. An overall view of the joint association among covariates and relapse free survival is obtained through Multiple Correspondence Analysis. Moreover cluster analysis on MCA coordinates was used to synthesize covariate patterns and to estimates the corresponding relapse free survival curve. This approach has been applied to a large “historical” case series of patients with breast cancer.File | Dimensione | Formato | |
---|---|---|---|
Estimating Relapse Free Survival as a Net Probability Regression Models and Graphical Representation. An Application of a Large Breast Cancer Case Series.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
627.6 kB
Formato
Adobe PDF
|
627.6 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.