Purpose: Over the past decade, nuclear medicine experts have been seeking to minimize patient exposure to radiation in myocardial perfusion scintigraphy (MPS). This review describes the latest technological innovations in MPS, particularly with regard to dose reduction. Methods: We searched in PubMed for original clinical papers in English, published after 2008, using the following research criteria: (dose) and ((reduction) or (reducing)) and ((myocardial) or (cardiac) or (heart)) and ((nuclear medicine) or (nuclear imaging) or (radionuclide) or (scintigraphy) or (SPET) or (SPECT)). Thereafter, recent reviews on the topic were considered and other relevant clinical papers were added to the results. Results: Of 202 non-duplicate articles, 17 were included. To these, another eight papers cited in recent reviews were added. By optimizing the features of software, i.e., through algorithms for iterative reconstruction with resolution recovery (IRRs), and hardware, i.e., scanners and collimators, and by preferring, unless otherwise indicated, the use of stress-first imaging protocols, it has become possible to reduce the effective dose by at least 50% in stress/rest protocols, and by up to 89% in patients undergoing a diagnostic stress-only study with new technology. With today’s SPECT/CT systems, the use of a stress-first protocol can conveniently be performed, resulting in an overall dose reduction of about 35% if two-thirds of stress-first examinations were considered definitively normal. Conclusion: Using innovative gamma cameras, collimators and software, as well as, unless otherwise indicated, stress-first imaging protocols, it has become possible to reduce significantly the effective dose in a high percentage of patients, even when X-ray CT scanning is performed for attenuation correction.

Myocardial perfusion scintigraphy dosimetry : optimal use of SPECT and SPECT/CT technologies in stress-first imaging protocol / M. Lecchi, S. Malaspina, C. Scabbio, V. Gaudieri, A. Del Sole. - In: CLINICAL AND TRANSLATIONAL IMAGING. - ISSN 2281-5872. - 4:6(2016), pp. 491-498. [10.1007/s40336-016-0212-9]

Myocardial perfusion scintigraphy dosimetry : optimal use of SPECT and SPECT/CT technologies in stress-first imaging protocol

M. Lecchi
Primo
;
S. Malaspina
Secondo
;
C. Scabbio;A. Del Sole
Ultimo
2016

Abstract

Purpose: Over the past decade, nuclear medicine experts have been seeking to minimize patient exposure to radiation in myocardial perfusion scintigraphy (MPS). This review describes the latest technological innovations in MPS, particularly with regard to dose reduction. Methods: We searched in PubMed for original clinical papers in English, published after 2008, using the following research criteria: (dose) and ((reduction) or (reducing)) and ((myocardial) or (cardiac) or (heart)) and ((nuclear medicine) or (nuclear imaging) or (radionuclide) or (scintigraphy) or (SPET) or (SPECT)). Thereafter, recent reviews on the topic were considered and other relevant clinical papers were added to the results. Results: Of 202 non-duplicate articles, 17 were included. To these, another eight papers cited in recent reviews were added. By optimizing the features of software, i.e., through algorithms for iterative reconstruction with resolution recovery (IRRs), and hardware, i.e., scanners and collimators, and by preferring, unless otherwise indicated, the use of stress-first imaging protocols, it has become possible to reduce the effective dose by at least 50% in stress/rest protocols, and by up to 89% in patients undergoing a diagnostic stress-only study with new technology. With today’s SPECT/CT systems, the use of a stress-first protocol can conveniently be performed, resulting in an overall dose reduction of about 35% if two-thirds of stress-first examinations were considered definitively normal. Conclusion: Using innovative gamma cameras, collimators and software, as well as, unless otherwise indicated, stress-first imaging protocols, it has become possible to reduce significantly the effective dose in a high percentage of patients, even when X-ray CT scanning is performed for attenuation correction.
CT; dose reduction; myocardial perfusion imaging; patient dose; radiation exposure; spect; radiology, nuclear medicine and imaging
Settore MED/36 - Diagnostica per Immagini e Radioterapia
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs40336-016-0212-9.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/463012
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact