This work is a review of previous works on the stopping laws in networks. Among other results, we show a non combinatorial method to compute the stopping law, the existence of a minimal Markov chain without oversized information, the existence of a polynomial algorithm which projects the Markov chain onto the minimal Markov chain. Several applied examples are presented.

How to Reduce Unnecessary Noise in Targeted Networks / G. Aletti, D. Saada - In: Networks, Topology and Dynamics : Theory and Applications to Economics and Social Systems / [a cura di] A. K. Naimzada, S. Stefani, A. Torriero. - Berlin : Springer, 2009. - ISBN 978-3-540-68407-7. - pp. 177-194

How to Reduce Unnecessary Noise in Targeted Networks

G. Aletti
Primo
;
2009

Abstract

This work is a review of previous works on the stopping laws in networks. Among other results, we show a non combinatorial method to compute the stopping law, the existence of a minimal Markov chain without oversized information, the existence of a polynomial algorithm which projects the Markov chain onto the minimal Markov chain. Several applied examples are presented.
Settore MAT/06 - Probabilita' e Statistica Matematica
2009
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/46292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact