The aim of the AEgIS experiment is to measure the gravitational acceleration for anti-hydrogen in the Earth's gravitational field, thus testing the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independent of their mass and composition. AEgIS will make use of a gravity module which includes a silicon detector, in order to measure the deflection of anti-hydrogen from a straight path due to the Earth's gravitational field, by detecting the annihilation position on its surface. A position resolution better than 10 μm is required to determine the gravitational acceleration with a precision better than 10%. The work presented here is part of a study of different silicon sensor technologies to realise a silicon anti-hydrogen detector for the AEgIS experiment at CERN. We here focus on the study of a 3D pixel sensor with FE-I4 readout, originally designed for the ATLAS detector at the LHC, and compare it to a previous monolithic planar detector studied, the MIMOTERA. The direct annihilation of low energy anti-protons (∼ 100 keV) takes place in the first layers and we show that the charged annihilation products (pions and nuclear fragments) can be detected by such a sensor. The present study aims at understanding the signature of an annihilation event in a 3D silicon sensor, in order to assess the accuracy that can be achieved by such a sensor in the reconstruction of the position of annihilation, when the same happens directly on the detector surface. We also present a comparison between experimental data and GEANT4 simulations and previous data obtained with a silicon imaging detector. These results are being used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS.

Annihilation of low energy antiprotons in silicon sensors / A. Gligorova, S. Aghion, O. Ahlen, A.S. Belov, G. Bonomi, P. Braunig, J. Bremer, R.S. Brusa, G. Burghart, L. Cabaret, M. Caccia, C. Canali, R. Caravita, F. Castelli, G. Cerchiari, S. Cialdi, D. Comparat, G. Consolati, J.H. Derking, C. Da Via, S. Di Domizio, L. Di Noto, M. Doser, A. Dudarev, R. Ferragut, A. Fontana, P. Genova, M. Giammarchi, S.N. Gninenko, S. Haider, T. Huse, E. Jordan, L.V. Jorgensen, T. Kaltenbacher, A. Kellerbauer, A. Knecht, D. Krasnicky, V. Lagomarsino, S. Lehner, A. Magnani, C. Malbrunot, S. Mariazzi, V.A. Matveev, F. Moia, C. Nellist, G. Nebbia, P. Nedelec, M. Oberthaler, N. Pacifico, V. Petracek, F. Prelz, M. Prevedelli, C. Regenfus, C. Riccardi, O. Rohne, A. Rotondi, H. Sandaker, M.A. Subieta Vasquez, M. Spacek, G. Testera, E. Widmann, P. Yzombard, S. Zavatarelli, J. Zmeskal - In: 2013 IEEE Nuclear science symposium and medical imaging conference (2013 NSS/MIC) : Seoul, South Korea, 27 October - 2 November 2013Piscataway (New Jersey) : Institute of Electrical and Electronics Engineers, 2013. - ISBN 9781479905324. - pp. 1-7 (( Intervento presentato al 60. convegno IEEE Nuclear science symposium and medical imaging conference, NSS/MIC tenutosi a Seoul (South Korea) nel 2013.

Annihilation of low energy antiprotons in silicon sensors

F. Castelli;S. Cialdi;M. Giammarchi;F. Prelz;
2013

Abstract

The aim of the AEgIS experiment is to measure the gravitational acceleration for anti-hydrogen in the Earth's gravitational field, thus testing the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independent of their mass and composition. AEgIS will make use of a gravity module which includes a silicon detector, in order to measure the deflection of anti-hydrogen from a straight path due to the Earth's gravitational field, by detecting the annihilation position on its surface. A position resolution better than 10 μm is required to determine the gravitational acceleration with a precision better than 10%. The work presented here is part of a study of different silicon sensor technologies to realise a silicon anti-hydrogen detector for the AEgIS experiment at CERN. We here focus on the study of a 3D pixel sensor with FE-I4 readout, originally designed for the ATLAS detector at the LHC, and compare it to a previous monolithic planar detector studied, the MIMOTERA. The direct annihilation of low energy anti-protons (∼ 100 keV) takes place in the first layers and we show that the charged annihilation products (pions and nuclear fragments) can be detected by such a sensor. The present study aims at understanding the signature of an annihilation event in a 3D silicon sensor, in order to assess the accuracy that can be achieved by such a sensor in the reconstruction of the position of annihilation, when the same happens directly on the detector surface. We also present a comparison between experimental data and GEANT4 simulations and previous data obtained with a silicon imaging detector. These results are being used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS.
radiation; nuclear and high energy physics; radiology, nuclear medicine and imaging
Settore FIS/04 - Fisica Nucleare e Subnucleare
Settore FIS/01 - Fisica Sperimentale
2013
Institute of electrical and electronics engineers
Nuclear & plasma sciences society
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
06829519.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/457782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact