Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3β inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.

Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies / M. Sabatino, J. Hu, M. Sommariva, S. Gautam, V. Fellowes, J.D. Hocker, S. Dougherty, H. Qin, C.A. Klebanoff, T.J. Fry, R.E. Gress, J.N. Kochenderfer, D.F. Stroncek, Y. Ji, L. Gattinoni. - In: BLOOD. - ISSN 0006-4971. - 128:4(2016 Jul 28), pp. 519-528. [10.1182/blood-2015-11-683847]

Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies

M. Sommariva
Primo
;
2016

Abstract

Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3β inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.
Settore MED/04 - Patologia Generale
Settore BIO/17 - Istologia
28-lug-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
SabatinoGattinoni_Blood_Generarion_2016.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/457020
Citazioni
  • ???jsp.display-item.citation.pmc??? 160
  • Scopus 255
  • ???jsp.display-item.citation.isi??? 250
social impact