We introduce a new recommending paradigm based on the genomic features of the candidate objects. The system is based on the tree structure of the object metadata which we convert in acceptance rules, leaving the user the discretion of selecting the most convincing rules for her/his scope. We framed the deriving recommendation system on a content management platform within the scope of the European Project NETT and tested it on the Entree UCI benchmark.

A rule based recommender system / B. Apolloni, S. Bassis, M. Mesiti, S. Valtolina, F. Epifania - In: Advances in neural networks : computational Intelligence for ICT / [a cura di] S. Bassis, A. Esposito, F.C. Morabito, E. Pasero. - [s.l] : Springer Science, 2016. - ISBN 9783319337463. - pp. 87-96 (( convegno WIRN tenutosi a Vietri sul mare nel 2015.

A rule based recommender system

B. Apolloni
Primo
;
S. Bassis
;
M. Mesiti;S. Valtolina
Penultimo
;
F. Epifania
Ultimo
2016

Abstract

We introduce a new recommending paradigm based on the genomic features of the candidate objects. The system is based on the tree structure of the object metadata which we convert in acceptance rules, leaving the user the discretion of selecting the most convincing rules for her/his scope. We framed the deriving recommendation system on a content management platform within the scope of the European Project NETT and tested it on the Entree UCI benchmark.
Recommender system; Decision trees; Genomic features
Settore INF/01 - Informatica
2016
Comune di Vietri sul Mare, Salerno (Italy)
Department of Psychology, Second University of Napoli (Italy)
Etal
International Institute for Advanced Scientific Studies (IIASS) of Vietri S/M (Italy)
International Neural Network Society (INNS)
Provincia di Salerno (Italy)
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
rrecomm2.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 757.63 kB
Formato Adobe PDF
757.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/456420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact