9-Amino-9-deoxy-epi-quinine, properly modified by suitable linkers, was anchored on highly cross-linked polystyrene, poly(ethylene glycol), and silica. The resulting species were characterized by NMR spectroscopy and tested as supported organocatalysts in the reaction between isobutyric aldehyde and trans--nitrostyrene. Polystyrene- and poly(ethylene glycol)-supported catalysts outperformed their nonsupported counterpart affording the desired product in high yield and ee (>90% ee). Silica-supported catalysts proved to be less efficient in terms of both chemical yield and enantioselectivity. Polystyrene- and poly(ethylene glycol)-supported 9-amino-9-deoxy-epi-quinine were then used in the same reaction with different substrates, leading to the desired products in high yield and ee, as well as in three other reactions operating with different mechanism. An investigation of the recyclability of the polystyrene- and poly(ethylene glycol)-supported systems showed that these could be recovered and recycled with no loss of stereochemical activity but with a marked erosion of chemical efficiency occurring at the fifth reaction cycle. This was ascribed to chemical degradation of the alkaloid occurring during the reaction.
Comparison of Different Polymer- and Silica-Supported 9-Amino-9-deoxy-epi-quinines as Recyclable Organocatalysts / R. Porta, F. Coccia, R. Annunziata, A. Puglisi. - In: CHEMCATCHEM. - ISSN 1867-3880. - 7:9(2015 Apr), pp. 1490-1499. [10.1002/cctc.201500106]
Comparison of Different Polymer- and Silica-Supported 9-Amino-9-deoxy-epi-quinines as Recyclable Organocatalysts
R. PortaPrimo
;F. CocciaSecondo
;R. Annunziata;A. Puglisi
2015
Abstract
9-Amino-9-deoxy-epi-quinine, properly modified by suitable linkers, was anchored on highly cross-linked polystyrene, poly(ethylene glycol), and silica. The resulting species were characterized by NMR spectroscopy and tested as supported organocatalysts in the reaction between isobutyric aldehyde and trans--nitrostyrene. Polystyrene- and poly(ethylene glycol)-supported catalysts outperformed their nonsupported counterpart affording the desired product in high yield and ee (>90% ee). Silica-supported catalysts proved to be less efficient in terms of both chemical yield and enantioselectivity. Polystyrene- and poly(ethylene glycol)-supported 9-amino-9-deoxy-epi-quinine were then used in the same reaction with different substrates, leading to the desired products in high yield and ee, as well as in three other reactions operating with different mechanism. An investigation of the recyclability of the polystyrene- and poly(ethylene glycol)-supported systems showed that these could be recovered and recycled with no loss of stereochemical activity but with a marked erosion of chemical efficiency occurring at the fifth reaction cycle. This was ascribed to chemical degradation of the alkaloid occurring during the reaction.File | Dimensione | Formato | |
---|---|---|---|
ChemCatChem_2015_1490.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
769.01 kB
Formato
Adobe PDF
|
769.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.