Objective: Evidence has been presented that in both animals and humans the rebound secretion of growth hormone (GH) following withdrawal of an infusion of somatostatin (SS) is due to the functional activation of the hypothalamic GH-releasing hormone (GH-RH) neurons of the recipient organism. Based on this premise, this study has sought to assess the existence of functional interactions between endogenous GHRH released by a SS infusion withdrawal (SSIW) and growth hormone-releasing peptides (GHRPs), a class of compounds allegedly acting via GHRH. Methods: Five young dogs (3 to 4 years old, 2 male and 3 female) were administered, on different occasions, three consecutive intravenous boli of physiological saline (0.1 ml/kg), or GHRH (2 mug/kg), or EP92632 (125 mug/kg), a GHRP compound, or GHRH plus EP92632 at the end of three cycles of 1-h SS infusions (8 mug/(kgxh)) or during a 6-h infusion of saline. Results: Under saline infusion (SALI), plasma GH levels were unaltered, whereas each SSIW cycle was followed by similar GH secretory episodes. Administration of the first GHRH bolus under SALI induced a rise in plasma GH concentrations slightly higher than that induced by the first cycle of SSIW, but the GH response to the second and third GHRH boli was similar to that after SSIW. Following SSIW, the response to the first bolus of GHRH was higher than that during SALI, but the second and third cycles of SSIW induced GH responses similar to those evoked by the GHRH bolus. During SALI administration of the first bolus of EP92632 induced a rise in plasma GH which was higher than that induced by the first GHRH bolus, the second bolus elicited a GH peak of lesser amplitude and there was a partial restoration of the GH response to the third peptide bolus. SSIW strikingly enhanced the GH release to the first EP92632 bolus, a pattern also present, although to a lesser extent, with the second and third cycles of SSIW. Under SALI combined administration of GHR-H and EP92632 had a synergistic effect on GH release, but a progressive reduction was present in the GH response to the second and third GHRH plus EP92632 boli. SSIW increased only weakly the GH response to the first co-administration of the peptides over that present after administration of EP92632 alone, and did not induce a GH response higher than that present during SALI when the second bolus of the peptides was administered; after the third SSIW a GH rise higher than that present during SALI was elicited by the combined administration of the peptides. Conclusions: (i) the uniformity of the GH rebound responses to multiple cycles of SSIW may indicate that the latter activate a physiological mechanism which mimics that normally controlling GH pulse generation; (ii) EP92632 elicits, under our experimental conditions, a plasma GH rise higher than that induced by GHRH; (iii) SSIW enhances the GH response to EP92639 alone, to an extent reminiscent of that following combined administration of GHRH and EP92632. This pattern reinforces the view that SSIW elicits release of endogenous GHRH, and infers that the GHRP challenge after SSIW may be exploited in humans to distinguish between healthy and GH-deficient adults.

Growth hormone (GH) rebound rise following somatostatin infusion withdrawal: studies in dogs with the use of GH-releasing hormone and a GH-releasing peptide / A. Rigamonti, G. Cavallera, S. Bonomo, R. Deghenghi, V. Locatelli, S. Cella, E. Müller. - In: EUROPEAN JOURNAL OF ENDOCRINOLOGY. - ISSN 0804-4643. - 145:5(2001), pp. 635-644.

Growth hormone (GH) rebound rise following somatostatin infusion withdrawal: studies in dogs with the use of GH-releasing hormone and a GH-releasing peptide

A. Rigamonti
Primo
;
S. Bonomo;V. Locatelli;S. Cella
Penultimo
;
2001

Abstract

Objective: Evidence has been presented that in both animals and humans the rebound secretion of growth hormone (GH) following withdrawal of an infusion of somatostatin (SS) is due to the functional activation of the hypothalamic GH-releasing hormone (GH-RH) neurons of the recipient organism. Based on this premise, this study has sought to assess the existence of functional interactions between endogenous GHRH released by a SS infusion withdrawal (SSIW) and growth hormone-releasing peptides (GHRPs), a class of compounds allegedly acting via GHRH. Methods: Five young dogs (3 to 4 years old, 2 male and 3 female) were administered, on different occasions, three consecutive intravenous boli of physiological saline (0.1 ml/kg), or GHRH (2 mug/kg), or EP92632 (125 mug/kg), a GHRP compound, or GHRH plus EP92632 at the end of three cycles of 1-h SS infusions (8 mug/(kgxh)) or during a 6-h infusion of saline. Results: Under saline infusion (SALI), plasma GH levels were unaltered, whereas each SSIW cycle was followed by similar GH secretory episodes. Administration of the first GHRH bolus under SALI induced a rise in plasma GH concentrations slightly higher than that induced by the first cycle of SSIW, but the GH response to the second and third GHRH boli was similar to that after SSIW. Following SSIW, the response to the first bolus of GHRH was higher than that during SALI, but the second and third cycles of SSIW induced GH responses similar to those evoked by the GHRH bolus. During SALI administration of the first bolus of EP92632 induced a rise in plasma GH which was higher than that induced by the first GHRH bolus, the second bolus elicited a GH peak of lesser amplitude and there was a partial restoration of the GH response to the third peptide bolus. SSIW strikingly enhanced the GH release to the first EP92632 bolus, a pattern also present, although to a lesser extent, with the second and third cycles of SSIW. Under SALI combined administration of GHR-H and EP92632 had a synergistic effect on GH release, but a progressive reduction was present in the GH response to the second and third GHRH plus EP92632 boli. SSIW increased only weakly the GH response to the first co-administration of the peptides over that present after administration of EP92632 alone, and did not induce a GH response higher than that present during SALI when the second bolus of the peptides was administered; after the third SSIW a GH rise higher than that present during SALI was elicited by the combined administration of the peptides. Conclusions: (i) the uniformity of the GH rebound responses to multiple cycles of SSIW may indicate that the latter activate a physiological mechanism which mimics that normally controlling GH pulse generation; (ii) EP92632 elicits, under our experimental conditions, a plasma GH rise higher than that induced by GHRH; (iii) SSIW enhances the GH response to EP92639 alone, to an extent reminiscent of that following combined administration of GHRH and EP92632. This pattern reinforces the view that SSIW elicits release of endogenous GHRH, and infers that the GHRP challenge after SSIW may be exploited in humans to distinguish between healthy and GH-deficient adults.
rat arcuate nucleus; (GH)-releasing factor; hexapeptide GHRP-6; hexarelin therapy; pituitary-cells; conscious male; binding-sites; female rats; factor GRF; aged dogs
Settore BIO/14 - Farmacologia
2001
Article (author)
File in questo prodotto:
File Dimensione Formato  
635.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 277.94 kB
Formato Adobe PDF
277.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/453712
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact