We have detected spontaneous, synchronous calcium oscillations, associated with variations in membrane potential, in hippocampal neurons maintained in primary culture. The oscillatory activity is synaptically driven, as it is blocked by tetrodotoxin, by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and by toxins inhibiting neurotransmitter release from presynaptic nerve endings. Neuronal oscillations do not require for their expression the presence of a polyneuronal network and are not primarily influenced by the gamma-aminobutyric acid (GABA(A)) receptor antagonist picrotoxin, suggesting that they entirely rely on glutamatergic neurotransmission. Synaptic and intrinsic conductances shape the synchronized oscillations in hippocampal neurons. The concomitant activation of N-methyl-D-aspartate (NMDA) receptors and voltage-activated L-type calcium channels allows calcium entering from the extracellular medium and sustaining the long depolarization, which shapes every single calcium wave.

Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture / A. Bacci, C. Verderio, E. Pravettoni, M. Matteoli. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - 11:2(1999 Feb), pp. 389-397. [10.1046/j.1460-9568.1999.00440.x]

Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture

A. Bacci
Primo
;
E. Pravettoni
Penultimo
;
M. Matteoli
Ultimo
1999

Abstract

We have detected spontaneous, synchronous calcium oscillations, associated with variations in membrane potential, in hippocampal neurons maintained in primary culture. The oscillatory activity is synaptically driven, as it is blocked by tetrodotoxin, by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and by toxins inhibiting neurotransmitter release from presynaptic nerve endings. Neuronal oscillations do not require for their expression the presence of a polyneuronal network and are not primarily influenced by the gamma-aminobutyric acid (GABA(A)) receptor antagonist picrotoxin, suggesting that they entirely rely on glutamatergic neurotransmission. Synaptic and intrinsic conductances shape the synchronized oscillations in hippocampal neurons. The concomitant activation of N-methyl-D-aspartate (NMDA) receptors and voltage-activated L-type calcium channels allows calcium entering from the extracellular medium and sustaining the long depolarization, which shapes every single calcium wave.
Calcium channels; Oscillations; Rat hippocampal neurons; Synaptic transmission
feb-1999
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/45227
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 98
social impact