In this paper, we consider Turing machines having simultaneous bounds on working space s(n), input head inversions i(n) and ambiguity degree d(n). Besides the standard notion of space complexity (Type 1), we discuss a stronger notion (Type 2). In the deterministic case, we show an optimal Ω ∞(log n/log log n) bound on input head inversions for recognizing nonregular languages on Type 1 machines that does not hold for Type 2 machines. Subsequently, the parallel complexity of the ranking problem is studied. We prove that any language accepted on Type 2 machines within s(n), i(n), d(n) simultaneous bounds such that s(n) · i(n) · d(n)=O(log n) can be ranked in DET.
On languages accepted with simultaneous complexity bounds and their ranking problem / A. Bertoni, C. Mereghetti, G. Pighizzini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Mathematical Foundations of Computer Science 1994 / [a cura di] I. Prívara, B. Rovan, P. Ruzička. - [s.l] : Springer, 1994. - ISBN 9783540583387. - pp. 245-255 (( Intervento presentato al 19. convegno MFCS'94 tenutosi a Košice nel 1994 [10.1007/3-540-58338-6_71].
On languages accepted with simultaneous complexity bounds and their ranking problem
A. BertoniPrimo
;C. MereghettiSecondo
;G. PighizziniUltimo
1994
Abstract
In this paper, we consider Turing machines having simultaneous bounds on working space s(n), input head inversions i(n) and ambiguity degree d(n). Besides the standard notion of space complexity (Type 1), we discuss a stronger notion (Type 2). In the deterministic case, we show an optimal Ω ∞(log n/log log n) bound on input head inversions for recognizing nonregular languages on Type 1 machines that does not hold for Type 2 machines. Subsequently, the parallel complexity of the ranking problem is studied. We prove that any language accepted on Type 2 machines within s(n), i(n), d(n) simultaneous bounds such that s(n) · i(n) · d(n)=O(log n) can be ranked in DET.File | Dimensione | Formato | |
---|---|---|---|
pubblicato.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
517.94 kB
Formato
Adobe PDF
|
517.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.