Downstream processing of biofuels and bio-based chemicals often represents the bottleneck for the economic sustainable development of new processes. It is also a challenging problem for process synthesis and optimization, due to the intrinsic nonideal thermodynamics of the liquid mixtures derived from the (bio)chemical conversion of biomass. In this Chapter, it is outlined a recent mathematical framework for the structural and parameter optimization of process flowsheets with rigorous and detailed models. The optimization problem is formulated within the Generalized Disjunctive Programming (GDP) framework and the solution of the reformulated MINLP problem is approached with a decomposition strategy based on the Outer-Approximation algorithm. At first, the mathematical formulation and the numerical implementation are outlined. In the second portion of the Chapter, several validation examples in the field of biorefineries are proposed spanning from the economic optimization of single distillation columns, the dewatering task of diluted bio-mixtures, up to the distillation sequencing with simultaneous mixed-integer design of each distillation column for a quaternary mixture in the presence of azeotropes.

Systematic design of biorefinery downstream processes / M. Corbetta, I.E. Grossman, C. Pirola, F. Manenti - In: Advances in Energy Systems Engineering / [a cura di] G.M. Kopanos, P. Liu, M.C. Georgiadis. - Prima edizione. - [s.l] : Springer, 2017. - ISBN 9783319428031. - pp. 683-712

Systematic design of biorefinery downstream processes

C. Pirola;
2017

Abstract

Downstream processing of biofuels and bio-based chemicals often represents the bottleneck for the economic sustainable development of new processes. It is also a challenging problem for process synthesis and optimization, due to the intrinsic nonideal thermodynamics of the liquid mixtures derived from the (bio)chemical conversion of biomass. In this Chapter, it is outlined a recent mathematical framework for the structural and parameter optimization of process flowsheets with rigorous and detailed models. The optimization problem is formulated within the Generalized Disjunctive Programming (GDP) framework and the solution of the reformulated MINLP problem is approached with a decomposition strategy based on the Outer-Approximation algorithm. At first, the mathematical formulation and the numerical implementation are outlined. In the second portion of the Chapter, several validation examples in the field of biorefineries are proposed spanning from the economic optimization of single distillation columns, the dewatering task of diluted bio-mixtures, up to the distillation sequencing with simultaneous mixed-integer design of each distillation column for a quaternary mixture in the presence of azeotropes.
Settore ING-IND/25 - Impianti Chimici
2017
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
371683_1_En_23_Chapter_Author_REVISED_Springer.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/450934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact