Correlations among biofilm activity, chemistry and power production of membraneless, single chamber microbial fuel cells (MFC) were established using four microelectrodes. Each different (pH, redox, conductivity, S-2) microelectrode was assembled, calibrated and located close to the cathode. Power productivity of five MFCs was explained in terms of response of the microelectrodes. pH variation demonstrated that a proton gradient establishes within the cathodic biofilm, increasing acidity near the electrode. Conductivity increases inside the biofilm, proving low diffusion and increased ion concentration. Redox profiles provide a significant improvement to the understanding of the biochemical equilibria inside and outside the biofilm. Sulphide variations emphasize the role of the sulphur cycle in the MFC development. Diffusion hindrance seems the key-factor for the development of a biofilm and the establishment of a natural separation of the cell in cathodic and anodic compartments.
Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes / E. Guerrini, M. Grattieri, S.P. Trasatti, M. Bestetti, P. Cristiani. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 39:36(2014), pp. 21837-21846. [10.1016/j.ijhydene.2014.06.132]
Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes
E. GuerriniPrimo
;M. GrattieriSecondo
;S.P. Trasatti;
2014
Abstract
Correlations among biofilm activity, chemistry and power production of membraneless, single chamber microbial fuel cells (MFC) were established using four microelectrodes. Each different (pH, redox, conductivity, S-2) microelectrode was assembled, calibrated and located close to the cathode. Power productivity of five MFCs was explained in terms of response of the microelectrodes. pH variation demonstrated that a proton gradient establishes within the cathodic biofilm, increasing acidity near the electrode. Conductivity increases inside the biofilm, proving low diffusion and increased ion concentration. Redox profiles provide a significant improvement to the understanding of the biochemical equilibria inside and outside the biofilm. Sulphide variations emphasize the role of the sulphur cycle in the MFC development. Diffusion hindrance seems the key-factor for the development of a biofilm and the establishment of a natural separation of the cell in cathodic and anodic compartments.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360319914018722-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.