Aims Retinoic acid has recently yielded promising results in the treatment of Cushing's disease, i.e., excess cortisol secretion due to a pituitary corticotropin (ACTH)-secreting adenoma. In addition to its effect on the tumoral corticotrope cell, clinical results suggest an additional adrenal site of action. Aim of this study was to evaluate whether retinoic acid modulates cortisol synthesis and secretion by human adrenals in vitro. Main methods Primary cultures from 10 human adrenals specimens were incubated with 10 nM, 100 nM and 1 μM retinoic acid with and without 10 nM ACTH for 24 h. Cortisol levels were measured by radioimmunoassay and CYP11A1, STAR and MC2R gene expression analyzed by real-time PCR. Key findings Retinoic acid increased cortisol secretion (149.5 ± 33.01%, 151.3 ± 49.45% and 129.3 ± 8.32% control secretion for 10 nM, 100 nM and 1 μM respectively, p < 0.05) and potentiated STAR expression (1.51 ± 0.22, 1.56 ± 0.15 and 1.59 ± 0.14 fold change over baseline, for 10 nM, 100 nM and 1 μM respectively, p < 0.05). Concurrently, retinoic acid markedly blunted constitutional and ACTH-induced MC2R expression (0.66 ± 0.11, 0.62 ± 0.08 and 0.53 ± 0.07 fold change over baseline, for 10 nM, 100 nM and 1 μM respectively, p < 0.05; 0.71 ± 0.10, 0.51 ± 0.07 and 0.51 ± 0.08 fold change over ACTH alone, for 10 nM, 100 nM and 1 μM respectively, p < 0.05). No effect on CYP11A1 was observed. Significance Retinoic acid stimulates cortisol synthesis and secretion in human adrenals and at the same time markedly blunts ACTH receptor transcription. These results reveal a novel, adrenal effect of retinoic acid which may contribute to its efficacy in patients with Cushing's disease.
Effect of retinoic acid on human adrenal corticosteroid synthesis / A. Sesta, M.F. Cassarino, L. Tapella, L. Castelli, F. Cavagnini, F. Pecori Giraldi. - In: LIFE SCIENCES. - ISSN 0024-3205. - 151(2016 Apr 15), pp. 277-280. [10.1016/j.lfs.2016.03.023]
Effect of retinoic acid on human adrenal corticosteroid synthesis
L. Tapella;F. CavagniniPenultimo
;F. Pecori Giraldi
Ultimo
2016
Abstract
Aims Retinoic acid has recently yielded promising results in the treatment of Cushing's disease, i.e., excess cortisol secretion due to a pituitary corticotropin (ACTH)-secreting adenoma. In addition to its effect on the tumoral corticotrope cell, clinical results suggest an additional adrenal site of action. Aim of this study was to evaluate whether retinoic acid modulates cortisol synthesis and secretion by human adrenals in vitro. Main methods Primary cultures from 10 human adrenals specimens were incubated with 10 nM, 100 nM and 1 μM retinoic acid with and without 10 nM ACTH for 24 h. Cortisol levels were measured by radioimmunoassay and CYP11A1, STAR and MC2R gene expression analyzed by real-time PCR. Key findings Retinoic acid increased cortisol secretion (149.5 ± 33.01%, 151.3 ± 49.45% and 129.3 ± 8.32% control secretion for 10 nM, 100 nM and 1 μM respectively, p < 0.05) and potentiated STAR expression (1.51 ± 0.22, 1.56 ± 0.15 and 1.59 ± 0.14 fold change over baseline, for 10 nM, 100 nM and 1 μM respectively, p < 0.05). Concurrently, retinoic acid markedly blunted constitutional and ACTH-induced MC2R expression (0.66 ± 0.11, 0.62 ± 0.08 and 0.53 ± 0.07 fold change over baseline, for 10 nM, 100 nM and 1 μM respectively, p < 0.05; 0.71 ± 0.10, 0.51 ± 0.07 and 0.51 ± 0.08 fold change over ACTH alone, for 10 nM, 100 nM and 1 μM respectively, p < 0.05). No effect on CYP11A1 was observed. Significance Retinoic acid stimulates cortisol synthesis and secretion in human adrenals and at the same time markedly blunts ACTH receptor transcription. These results reveal a novel, adrenal effect of retinoic acid which may contribute to its efficacy in patients with Cushing's disease.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0024320516301771-main.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
346.51 kB
Formato
Adobe PDF
|
346.51 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.