In this paper we study a generalization of the notion of categorical semidirect product, as defined in [6], to a non-protomodular context of categories where internal actions are induced by points, like in any pointed variety. There we define semidirect products only for regular points, in the sense we explain below, provided the Split Short Five Lemma between such points holds, and we show that this is the case if the category is normal, as defined in [12]. Finally, we give an example of a category that is neither protomodular nor Mal’tsev where such generalized semidirect products exist.

Semidirect products and split short five lemma in normal categories / N. Martins Ferreira, A. Montoli, M. Sobral. - In: APPLIED CATEGORICAL STRUCTURES. - ISSN 0927-2852. - 22:5/6(2014), pp. 687-697. [10.1007/s10485-013-9344-5]

Semidirect products and split short five lemma in normal categories

A. Montoli
;
2014

Abstract

In this paper we study a generalization of the notion of categorical semidirect product, as defined in [6], to a non-protomodular context of categories where internal actions are induced by points, like in any pointed variety. There we define semidirect products only for regular points, in the sense we explain below, provided the Split Short Five Lemma between such points holds, and we show that this is the case if the category is normal, as defined in [12]. Finally, we give an example of a category that is neither protomodular nor Mal’tsev where such generalized semidirect products exist.
internal actions; normal categories; regular points; semidirect products; theoretical computer science; computer science (all)
Settore MAT/02 - Algebra
2014
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/448280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact