In this paper we use Janelidze’s approach to the classical theory of topological coverings via categorical Galois theory to study coverings in categories of relational algebras. Moreover, we present characterizations of effective descent morphisms in the categories of M-ordered sets and of multi-ordered sets.

Covering morphisms in categories of relational algebras / M.M. Clementino, D. Hofmann, A. Montoli. - In: APPLIED CATEGORICAL STRUCTURES. - ISSN 0927-2852. - 22:5/6(2014), pp. 767-788. [10.1007/s10485-013-9349-0]

Covering morphisms in categories of relational algebras

A. Montoli
Ultimo
2014

Abstract

In this paper we use Janelidze’s approach to the classical theory of topological coverings via categorical Galois theory to study coverings in categories of relational algebras. Moreover, we present characterizations of effective descent morphisms in the categories of M-ordered sets and of multi-ordered sets.
connected component; covering; effective descent morphism; Galois theory; relational algebra; theoretical computer science; computer science (all)
Settore MAT/03 - Geometria
Settore MAT/02 - Algebra
Settore MAT/01 - Logica Matematica
2014
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/448278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact