Let g(x):= (e/x)xΓ(x+1) and F(x,y):= g(x)g(y)/g(x+y). Let Dx,y(k) be the k th differential in Taylor's expansion of logF(x,y) . We prove that when (x,y) ∈ R+2 one has (-1)k-1Dx,y(k) (X,Y) > 0 for every X,Y ∈ R+, and that when k is even the conclusion holds for every X,Y ∈ R with (X,Y) = (0,0). This implies that Taylor's polynomials for logF provide upper and lower bounds for logF according to the parity of their degree. The formula connecting the Beta function to the Gamma function shows that the bounds for F are actually bounds for Beta.

Inequalities for the beta function / L. Grenié, G. Molteni. - In: MATHEMATICAL INEQUALITIES & APPLICATIONS. - ISSN 1331-4343. - 18:4(2015), pp. 1427-1442.

Inequalities for the beta function

G. Molteni
Ultimo
2015

Abstract

Let g(x):= (e/x)xΓ(x+1) and F(x,y):= g(x)g(y)/g(x+y). Let Dx,y(k) be the k th differential in Taylor's expansion of logF(x,y) . We prove that when (x,y) ∈ R+2 one has (-1)k-1Dx,y(k) (X,Y) > 0 for every X,Y ∈ R+, and that when k is even the conclusion holds for every X,Y ∈ R with (X,Y) = (0,0). This implies that Taylor's polynomials for logF provide upper and lower bounds for logF according to the parity of their degree. The formula connecting the Beta function to the Gamma function shows that the bounds for F are actually bounds for Beta.
Completely monotone function; Euler Beta function; Explicit bounds; Mathematics (all); Applied Mathematics
Settore MAT/05 - Analisi Matematica
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
36-molteni-Inequalities_for_the_Beta_function.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 356.64 kB
Formato Adobe PDF
356.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/448163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact