Let ψK be the Chebyshev function of a number field K. Let ψK(1)(x) :=∫0xψK(t) dt and ψK(2)(x) :=2∫0xψK(1)(t) dt. We prove under GRH (Generalized Riemann Hypothesis) explicit inequalities for the differences |ψK(1) (x)-x2/2| and |ψK(2) (x)-x3/3|. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.

Explicit smoothed prime ideals theorems under GRH / L. Grenié, G. Molteni. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - 85:300(2016 Jul), pp. 1875-1899. [10.1090/mcom3039]

Explicit smoothed prime ideals theorems under GRH

G. Molteni
2016-07

Abstract

Let ψK be the Chebyshev function of a number field K. Let ψK(1)(x) :=∫0xψK(t) dt and ψK(2)(x) :=2∫0xψK(1)(t) dt. We prove under GRH (Generalized Riemann Hypothesis) explicit inequalities for the differences |ψK(1) (x)-x2/2| and |ψK(2) (x)-x3/3|. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.
algebra and number theory; applied mathematics; computational mathematics
Settore MAT/05 - Analisi Matematica
6-ott-2015
MATHEMATICS OF COMPUTATION
Article (author)
File in questo prodotto:
File Dimensione Formato  
35-molteni-Explicit_smoothed_prime_ideals_theorems_under_GRH.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 503.91 kB
Formato Adobe PDF
503.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/448119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact