Let ψK be the Chebyshev function of a number field K. Let ψK(1)(x) :=∫0xψK(t) dt and ψK(2)(x) :=2∫0xψK(1)(t) dt. We prove under GRH (Generalized Riemann Hypothesis) explicit inequalities for the differences |ψK(1) (x)-x2/2| and |ψK(2) (x)-x3/3|. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.
Explicit smoothed prime ideals theorems under GRH / L. Grenié, G. Molteni. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - 85:300(2016 Jul), pp. 1875-1899. [10.1090/mcom3039]
Explicit smoothed prime ideals theorems under GRH
G. MolteniUltimo
2016
Abstract
Let ψK be the Chebyshev function of a number field K. Let ψK(1)(x) :=∫0xψK(t) dt and ψK(2)(x) :=2∫0xψK(1)(t) dt. We prove under GRH (Generalized Riemann Hypothesis) explicit inequalities for the differences |ψK(1) (x)-x2/2| and |ψK(2) (x)-x3/3|. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
35-molteni-Explicit_smoothed_prime_ideals_theorems_under_GRH.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
503.91 kB
Formato
Adobe PDF
|
503.91 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.