Let ψK be the Chebyshev function of a number field K. Under the Generalized Riemann Hypothesis we prove an explicit upper bound for |ψK(x)-x| in terms of the degree and the discriminant of K. The new bound improves significantly on previous known results.

Explicit versions of the prime ideal theorem for dedekind zeta functions under GRH / L. Grenié, G. Molteni. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - 85:298(2016 Mar), pp. 889-906. [10.1090/mcom3031]

Explicit versions of the prime ideal theorem for dedekind zeta functions under GRH

G. Molteni
2016-03

Abstract

Let ψK be the Chebyshev function of a number field K. Under the Generalized Riemann Hypothesis we prove an explicit upper bound for |ψK(x)-x| in terms of the degree and the discriminant of K. The new bound improves significantly on previous known results.
sharper bounds
Settore MAT/05 - Analisi Matematica
MATHEMATICS OF COMPUTATION
Article (author)
File in questo prodotto:
File Dimensione Formato  
34-molteni-Explicit_versions_of_the_prime_ideal_theorem_for_Dedekind_zeta_functions_under_GRH.pdf

non disponibili

Tipologia: Publisher's version/PDF
Dimensione 428.9 kB
Formato Adobe PDF
428.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/448115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact