Let ψK be the Chebyshev function of a number field K. Under the Generalized Riemann Hypothesis we prove an explicit upper bound for |ψK(x)-x| in terms of the degree and the discriminant of K. The new bound improves significantly on previous known results.
Explicit versions of the prime ideal theorem for dedekind zeta functions under GRH / L. Grenié, G. Molteni. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - 85:298(2016 Mar), pp. 889-906. [10.1090/mcom3031]
Explicit versions of the prime ideal theorem for dedekind zeta functions under GRH
G. Molteni
2016-03
Abstract
Let ψK be the Chebyshev function of a number field K. Under the Generalized Riemann Hypothesis we prove an explicit upper bound for |ψK(x)-x| in terms of the degree and the discriminant of K. The new bound improves significantly on previous known results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
34-molteni-Explicit_versions_of_the_prime_ideal_theorem_for_Dedekind_zeta_functions_under_GRH.pdf
non disponibili
Tipologia:
Publisher's version/PDF
Dimensione
428.9 kB
Formato
Adobe PDF
|
428.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
Caricamento pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.