After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate. The obtained pulsatile pressures and flow rates (diastolic/systolic: 80/120 mmHg and 200/100 mL/min, respectively) showed a reliable mimicking of the complex coronary hemodynamic environment. Saphenous vein segments from patients undergoing coronary artery bypass grafting (n = 12) were subjected to stimulation in our bioreactor with coronary pulsatile pressure/flow patterns or with venous-like perfusion. After 7-day stimulation, SVs were fixed and stained for morphometric evaluation and immunofluorescence. Results were compared with untreated segments of the same veins. Morphometric and immunofluorescence analysis revealed that 7 days of pulsatile stimulation: (i) did not affect integrity of the vessel wall and lumen perimeter, (ii) significantly decreased both intima and media thickness, (iii) led to partial endothelial denudation, and (iv) induced apoptosis in the vessel wall. These data are consistent with the early vessel remodeling events involved in venous bypass adaptation to arterial flow/pressure patterns. The pulsatile system proved to be a suitable device to identify ex vivo mechanical cues leading to graft adaptation.

Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins / M. Piola, M. Ruiter, R. Vismara, V. Mastrullo, M. Agrifoglio, M. Zanobini, M. Pesce, M. Soncini, G. Fiore. - In: ANNALS OF BIOMEDICAL ENGINEERING. - ISSN 0090-6964. - (2016 Oct 17). [Epub ahead of print] [10.1007/s10439-016-1747-7]

Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins

M. Agrifoglio;
2016

Abstract

After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate. The obtained pulsatile pressures and flow rates (diastolic/systolic: 80/120 mmHg and 200/100 mL/min, respectively) showed a reliable mimicking of the complex coronary hemodynamic environment. Saphenous vein segments from patients undergoing coronary artery bypass grafting (n = 12) were subjected to stimulation in our bioreactor with coronary pulsatile pressure/flow patterns or with venous-like perfusion. After 7-day stimulation, SVs were fixed and stained for morphometric evaluation and immunofluorescence. Results were compared with untreated segments of the same veins. Morphometric and immunofluorescence analysis revealed that 7 days of pulsatile stimulation: (i) did not affect integrity of the vessel wall and lumen perimeter, (ii) significantly decreased both intima and media thickness, (iii) led to partial endothelial denudation, and (iv) induced apoptosis in the vessel wall. These data are consistent with the early vessel remodeling events involved in venous bypass adaptation to arterial flow/pressure patterns. The pulsatile system proved to be a suitable device to identify ex vivo mechanical cues leading to graft adaptation.
coronary flow rate; ex vivo platform; pulsatile pressure; saphenous vein graft disease; wall remodeling
Settore MED/23 - Chirurgia Cardiaca
17-ott-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
piola et al reprint.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/446415
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact