Background: The activities of the HS (sulfhydryl or thiolic) group in the cysteine of glutathione or various low-weight soluble molecules (thiolic drugs), such as N-acethylcysteine, mesna, thiopronine and dithiotreitol or stepronine and erdosteine (prodrugs), include its antioxidant activity in the airways during the release of reactive oxygen or nitrogen species (ROS, RNS) by polymorphonuclear neutrophils (PMNs) activated in response to exogenous or endogenous stimuli. Objective: In addition to being administered by means of thiolic molecules, the HS group can also be given by means of the inhalation of sulphurous thermal water. The aim of this study was to investigate the effect of sulphurous thermal water on the release of ROS and RNS during the bursts of human PMNs. Methods: The luminol-amplified chemiluminescence methodology was used to investigate the ROS and RNS released by PMNs stimulated with N-formyl-methionyl-leucyl-phenylalanine and phorbol-12-myristate-13-acetate, before and after incubation with sulphurous water. Effects on cell-free systems were also investigated. Results: The water significantly reduced the luminol-amplified chemiluminescence of N-formyl-methionyl-leucyl-phenylalanine- andphorbol-12-myristate-13-acetate-activated PMNs on average from 0.94 to 15.5 μg/ml of HS, even after the addition of L-arginine, a nitric oxide (NO) donor. Similar findings have also been obtained in a cell-free system, thus confirming the importance of the presence of the HS group (reductive activity). Conclusions: The positive effects of the activity of sulphurous thermal waters has been partially based on the patients' subjective sense of wellbeing and partially on not always easy to quantify symptomatic (or general) clinical improvements. Our findings indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, the HS groups present in the sulphurous thermal water of this spring also have antioxidant activity that contributes to the therapeutic effects of the water in upper and lower airway inflammatory diseases. Copyright

Antioxidant effect of sulfurous thermal water on human neutrophil respiratory burst : chemiluminescence evaluation / P. Braga, G. Sambataro, M. Dal Sasso, M. Culici, M. Alfieri, G. Nappi. - In: RESPIRATION. - ISSN 0025-7931. - 75:2(2008 Mar), pp. 193-204. [10.1159/000107976]

Antioxidant effect of sulfurous thermal water on human neutrophil respiratory burst : chemiluminescence evaluation

P. Braga
Primo
;
2008

Abstract

Background: The activities of the HS (sulfhydryl or thiolic) group in the cysteine of glutathione or various low-weight soluble molecules (thiolic drugs), such as N-acethylcysteine, mesna, thiopronine and dithiotreitol or stepronine and erdosteine (prodrugs), include its antioxidant activity in the airways during the release of reactive oxygen or nitrogen species (ROS, RNS) by polymorphonuclear neutrophils (PMNs) activated in response to exogenous or endogenous stimuli. Objective: In addition to being administered by means of thiolic molecules, the HS group can also be given by means of the inhalation of sulphurous thermal water. The aim of this study was to investigate the effect of sulphurous thermal water on the release of ROS and RNS during the bursts of human PMNs. Methods: The luminol-amplified chemiluminescence methodology was used to investigate the ROS and RNS released by PMNs stimulated with N-formyl-methionyl-leucyl-phenylalanine and phorbol-12-myristate-13-acetate, before and after incubation with sulphurous water. Effects on cell-free systems were also investigated. Results: The water significantly reduced the luminol-amplified chemiluminescence of N-formyl-methionyl-leucyl-phenylalanine- andphorbol-12-myristate-13-acetate-activated PMNs on average from 0.94 to 15.5 μg/ml of HS, even after the addition of L-arginine, a nitric oxide (NO) donor. Similar findings have also been obtained in a cell-free system, thus confirming the importance of the presence of the HS group (reductive activity). Conclusions: The positive effects of the activity of sulphurous thermal waters has been partially based on the patients' subjective sense of wellbeing and partially on not always easy to quantify symptomatic (or general) clinical improvements. Our findings indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, the HS groups present in the sulphurous thermal water of this spring also have antioxidant activity that contributes to the therapeutic effects of the water in upper and lower airway inflammatory diseases. Copyright
Settore BIO/14 - Farmacologia
mar-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/44287
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 46
social impact