Electron core-level spectroscopies have emerged as effective tools to investigate several aspects of the hybrid interface between organic molecules and a substrate. In particular, resonant photoemission spectroscopy can measure interfacial electron transfer times down to the femtosecond timescale. Furthermore, the strong perturbation induced by the core hole opens up the several questions on how the properties of the interface are modified, calling for a theoretical description of the core-excited system. We adopt a theoretical framework based on density-functional theory (DFT), where the excitation is introduced explicitly in the core-level occupation of an atom in a molecule, to investigate the electronic structure and electron transfer from/to organic molecules adsorbed on metal, semimetal, and semiconducting substrates. The perturbing potential lowers the energy of the molecular orbitals. Focusing on the lowest-unoccupied (LUMO), a filling of the core-excited LUMO* by substrate electrons may occur within the core-hole lifetime, as found for molecules on metals where the adsorption angle is also shown to influence the electron transfer rate [1,2]. In the case of a semimetal graphene substrate, a spin-polarized LUMO* pinned at the Fermi level can be determined for physisorbed molecules. In that case electron transfer would be suppressed given the low density of states of unsupported graphene at that energy, but still possible for graphene supported on a metal [3]. For molecules adsorbed on a semiconductor, the LUMO* may form a bound exciton in the gap [4]. Here, we found especially interesting to consider the influence of thermal motion on the energy-level alignment and the absorption coefficient [5,6]. References [1] D. Cvetko, G. Fratesi, G. Kladnik, A. Cossaro, G.P. Brivio, L. Venkataraman, and A. Morgante, submitted. [2] A. Baby, G. Fratesi, S.R. Vaidya, L.L. Patera, C. Africh, L. Floreano, G.P. Brivio, J. Phys. Chem. C 119 (2015) 3624. [3] A. Ravikumar, A. Baby, H. Lin, G.P. Brivio, and G. Fratesi, Scientific Reports 6 (2016) 24603. [4] G. Fratesi, C. Motta, M. I. Trioni, G. P. Brivio, and D. Sánchez-Portal, J. Phys. Chem. C 118 (2014) 8775 [5] H. Lin, G. Fratesi, S. Selçuk, G.P. Brivio, and A. Selloni, J. Phys. Chem. C, 120 (2016) 3899. [6] M. Muller, D. Sànchez-Portal, H. Lin, G. Fratesi, G.P. Brivio, and A. Selloni, in preparation.

Electron transfer with core-level excitations at hybrid interfaces / G. Fratesi, A. Baby, H. Lin, A. Ravikumar, M. Muller, D. Sànchez Portal, A. Selloni, G.P. Brivio. ((Intervento presentato al 3. convegno Workshop on Surfaces, Interfaces and Functionalization Processes in Organic Compounds and Applications (SINFO) tenutosi a Napoli nel 2016.

Electron transfer with core-level excitations at hybrid interfaces

G. Fratesi
Primo
;
2016

Abstract

Electron core-level spectroscopies have emerged as effective tools to investigate several aspects of the hybrid interface between organic molecules and a substrate. In particular, resonant photoemission spectroscopy can measure interfacial electron transfer times down to the femtosecond timescale. Furthermore, the strong perturbation induced by the core hole opens up the several questions on how the properties of the interface are modified, calling for a theoretical description of the core-excited system. We adopt a theoretical framework based on density-functional theory (DFT), where the excitation is introduced explicitly in the core-level occupation of an atom in a molecule, to investigate the electronic structure and electron transfer from/to organic molecules adsorbed on metal, semimetal, and semiconducting substrates. The perturbing potential lowers the energy of the molecular orbitals. Focusing on the lowest-unoccupied (LUMO), a filling of the core-excited LUMO* by substrate electrons may occur within the core-hole lifetime, as found for molecules on metals where the adsorption angle is also shown to influence the electron transfer rate [1,2]. In the case of a semimetal graphene substrate, a spin-polarized LUMO* pinned at the Fermi level can be determined for physisorbed molecules. In that case electron transfer would be suppressed given the low density of states of unsupported graphene at that energy, but still possible for graphene supported on a metal [3]. For molecules adsorbed on a semiconductor, the LUMO* may form a bound exciton in the gap [4]. Here, we found especially interesting to consider the influence of thermal motion on the energy-level alignment and the absorption coefficient [5,6]. References [1] D. Cvetko, G. Fratesi, G. Kladnik, A. Cossaro, G.P. Brivio, L. Venkataraman, and A. Morgante, submitted. [2] A. Baby, G. Fratesi, S.R. Vaidya, L.L. Patera, C. Africh, L. Floreano, G.P. Brivio, J. Phys. Chem. C 119 (2015) 3624. [3] A. Ravikumar, A. Baby, H. Lin, G.P. Brivio, and G. Fratesi, Scientific Reports 6 (2016) 24603. [4] G. Fratesi, C. Motta, M. I. Trioni, G. P. Brivio, and D. Sánchez-Portal, J. Phys. Chem. C 118 (2014) 8775 [5] H. Lin, G. Fratesi, S. Selçuk, G.P. Brivio, and A. Selloni, J. Phys. Chem. C, 120 (2016) 3899. [6] M. Muller, D. Sànchez-Portal, H. Lin, G. Fratesi, G.P. Brivio, and A. Selloni, in preparation.
28-giu-2016
Settore FIS/03 - Fisica della Materia
Consiglio Nazionale delle Ricerche
http://organics2016.spin.cnr.it/programme.php
Electron transfer with core-level excitations at hybrid interfaces / G. Fratesi, A. Baby, H. Lin, A. Ravikumar, M. Muller, D. Sànchez Portal, A. Selloni, G.P. Brivio. ((Intervento presentato al 3. convegno Workshop on Surfaces, Interfaces and Functionalization Processes in Organic Compounds and Applications (SINFO) tenutosi a Napoli nel 2016.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/442422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact