A commercially available acoustic grand piano, originally provided with keystroke speed sensors, is proposed as a standard instrument to quantitatively assess the technical side of pianist's performance, after the mechanical characteristics of the keyboard have been measured. We found a positional dependence of the relationship between the applied force and the resulting downstroke speed (i.e. treble keys descend fastest) due to the different hammer/hammer shaft mass to be accelerated. When this effect was removed by a custom software, the ability of 14 pianists was analysed in terms of variability in stroke intervals and keystroke speeds. C-major scales played by separate hands at different imposed tempos and at 5 subjectively chosen graded force levels were analysed to get insights into the achieved neuromuscular control. Accuracy and precision of time intervals and descent velocity of keystrokes were obtained by processing the generated MIDI files. The results quantitatively show: the difference between hands, the trade off between force range and tempo, and between time interval precision and tempo, the lower precision of descent speed associated to 'soft' playing, etc. Those results reflect well-established physiological and motor control characteristics of our movement system. Apart from revealing fundamental aspects of pianism, the proposed method could be used as a standard tool also for ergonomic (e.g. the mechanical work and power of playing), didactic and rehabilitation monitoring of pianists.
Keystroke dynamics and timing : accuracy, precision and difference between hands in pianist’s performance / A.E. Minetti, L.P. Ardigò, T. McKee. - In: JOURNAL OF BIOMECHANICS. - ISSN 0021-9290. - 40:16(2007), pp. 3738-3743.
Keystroke dynamics and timing : accuracy, precision and difference between hands in pianist’s performance
A.E. MinettiPrimo
;
2007
Abstract
A commercially available acoustic grand piano, originally provided with keystroke speed sensors, is proposed as a standard instrument to quantitatively assess the technical side of pianist's performance, after the mechanical characteristics of the keyboard have been measured. We found a positional dependence of the relationship between the applied force and the resulting downstroke speed (i.e. treble keys descend fastest) due to the different hammer/hammer shaft mass to be accelerated. When this effect was removed by a custom software, the ability of 14 pianists was analysed in terms of variability in stroke intervals and keystroke speeds. C-major scales played by separate hands at different imposed tempos and at 5 subjectively chosen graded force levels were analysed to get insights into the achieved neuromuscular control. Accuracy and precision of time intervals and descent velocity of keystrokes were obtained by processing the generated MIDI files. The results quantitatively show: the difference between hands, the trade off between force range and tempo, and between time interval precision and tempo, the lower precision of descent speed associated to 'soft' playing, etc. Those results reflect well-established physiological and motor control characteristics of our movement system. Apart from revealing fundamental aspects of pianism, the proposed method could be used as a standard tool also for ergonomic (e.g. the mechanical work and power of playing), didactic and rehabilitation monitoring of pianists.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.