The resource constrained elementary shortest path problem (RCESPP) arises as a pricing subproblem in branch-and-price algorithms for vehicle-routing problems with additional constraints. We address the optimization of the RCESPP and we present and compare three methods. The first method is a well-known exact dynamic-programming algorithm improved by new ideas, such as bidirectional search with resource-based bounding. The second method consists in a branch-and-bound algorithm, where lower bounds are computed by dynamic-programming with state-space relaxation; we show how bounded bidirectional search can be adapted to state-space relaxation and we present different branching strategies and their hybridization. The third method, called decremental state-space relaxation, is a new one; exact dynamic-programming and state-space relaxation are two special cases of this new method. The experimental comparison of the three methods is definitely favorable to decrement state-space relaxation. Computational results are given for different kinds of resources, arising from the capacitated vehicle-routing problem, the vehicle-routing problem with distribution and collection, and the vehicle-routing problem with capacities and time windows.

New dynamic programming algorithms for the resource constrained elementary shortest path problem / G. Righini, M. Salani. - In: NETWORKS. - ISSN 0028-3045. - 51:3(2008), pp. 155-170. [10.1002/net.20212]

New dynamic programming algorithms for the resource constrained elementary shortest path problem

G. Righini
Primo
;
2008

Abstract

The resource constrained elementary shortest path problem (RCESPP) arises as a pricing subproblem in branch-and-price algorithms for vehicle-routing problems with additional constraints. We address the optimization of the RCESPP and we present and compare three methods. The first method is a well-known exact dynamic-programming algorithm improved by new ideas, such as bidirectional search with resource-based bounding. The second method consists in a branch-and-bound algorithm, where lower bounds are computed by dynamic-programming with state-space relaxation; we show how bounded bidirectional search can be adapted to state-space relaxation and we present different branching strategies and their hybridization. The third method, called decremental state-space relaxation, is a new one; exact dynamic-programming and state-space relaxation are two special cases of this new method. The experimental comparison of the three methods is definitely favorable to decrement state-space relaxation. Computational results are given for different kinds of resources, arising from the capacitated vehicle-routing problem, the vehicle-routing problem with distribution and collection, and the vehicle-routing problem with capacities and time windows.
Shortest path ; Vehicle routing ; Column generation ; Dynamic programming ; Branch-and-bound.
Settore MAT/09 - Ricerca Operativa
2008
http://hdl.handle.net/2434/5590
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/43425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 211
  • ???jsp.display-item.citation.isi??? 196
social impact