Ensembles of learning machines constitute one of the main current directions in machine learning research, and have been applied to a wide range of real problems. Despite of the absence of an unified theory on ensembles, there are many theoretical reasons for combining multiple learners, and an empirical evidence of the effectiveness of this approach. In this paper we present a brief overview of ensemble methods, explaining the main reasons why they are able to outperform any single classifier within the ensemble, and proposing a taxonomy based on the main ways base classifiers can be generated or combined together.

Ensembles of learning machines / G. Valentini, F. Masulli - In: Neural Nets / [a cura di] R. Tagliaferri, M. Marinaro. - [s.l] : Springer, 2002. - ISBN 9783540442653. - pp. 3-20 (( Intervento presentato al 13. convegno Italian Workshop on Neural Nets tenutosi a Vietri sul Mare nel 2002.

Ensembles of learning machines

G. Valentini
Primo
;
2002

Abstract

Ensembles of learning machines constitute one of the main current directions in machine learning research, and have been applied to a wide range of real problems. Despite of the absence of an unified theory on ensembles, there are many theoretical reasons for combining multiple learners, and an empirical evidence of the effectiveness of this approach. In this paper we present a brief overview of ensemble methods, explaining the main reasons why they are able to outperform any single classifier within the ensemble, and proposing a taxonomy based on the main ways base classifiers can be generated or combined together.
ensemble methods; combining multiple learners
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
2002
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
wirn02.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 169.43 kB
Formato Adobe PDF
169.43 kB Adobe PDF Visualizza/Apri
chp%3A10.1007%2F3-540-45808-5_1.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 257.27 kB
Formato Adobe PDF
257.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/433880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 216
  • ???jsp.display-item.citation.isi??? 158
social impact