We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≃ 25 in the radial range of 200-3500 kpc h -1, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c200c = 4.01-0.32+0.35 at an effective halo mass of M200c = 1.34-0.09+0.10 × 1015 M⊙. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is αE = 0.191-0.068+0.071 , which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.

Clash : Weak-lensing shear-and-magnification analysis of 20 galaxy clusters / K. Umetsu, E. Medezinski, M. Nonino, J. Merten, M. Postman, M. Meneghetti, M. Donahue, N. Czakon, A. Molino, S. Seitz, D. Gruen, D. Lemze, I. Balestra, N. Benítez, A. Biviano, T. Broadhurst, H. Ford, C. Grillo, A. Koekemoer, P. Melchior, A. Mercurio, J. Moustakas, P. Rosati, A. Zitrin. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 795:2(2014 Nov). [10.1088/0004-637X/795/2/163]

Clash : Weak-lensing shear-and-magnification analysis of 20 galaxy clusters

C. Grillo;
2014

Abstract

We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≃ 25 in the radial range of 200-3500 kpc h -1, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c200c = 4.01-0.32+0.35 at an effective halo mass of M200c = 1.34-0.09+0.10 × 1015 M⊙. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is αE = 0.191-0.068+0.071 , which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.
cosmology: observations; dark matter; galaxies: clusters: general; gravitational lensing: weak; nuclear and high energy physics
Settore FIS/05 - Astronomia e Astrofisica
nov-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Clash_2016.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/432964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 229
  • ???jsp.display-item.citation.isi??? 227
social impact