Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.

Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis / S. Salati, R. Zini, S. Nuzzo, P. Guglielmelli, V. Pennucci, Z. Prudente, S. Ruberti, S. Rontauroli, R. Norfo, E. Bianchi, C. Bogani, G. Rotunno, T. Fanelli, C. Mannarelli, V. Rosti, S. Salmoiraghi, D. Pietra, S. Ferrari, G. Barosi, A. Rambaldi, M. Cazzola, S. Bicciato, E. Tagliafico, A.M. Vannucchi, R. Manfredini. - In: INTERNATIONAL JOURNAL OF CANCER. - ISSN 0020-7136. - 138:7(2016 Apr 01), pp. 1657-1669. [10.1002/ijc.29920]

Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis

A. Rambaldi;
2016

Abstract

Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.
primary myelofibrosis; HMGXB4; PAOX; megakaryocyte; copy number
Settore MED/15 - Malattie del Sangue
1-apr-2016
25-nov-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Salati_et_al-2016-International_Journal_of_Cancer.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 831.14 kB
Formato Adobe PDF
831.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/431458
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact