In this paper, we present a notion of total variation for measure-valued images. Our motivation is Diffusion Spectrum Imaging (DSI) in which the diffusion at each voxel is characterized by a probability density function. We introduce a total variation denoising problem for measure-valued images. In the one-dimensional case, this problem (which involves the Monge-Kantorovich metric for measures) can be solved using cumulative distribution functions. In higher dimensions, more computationally expensive methods must be employed.

Total variation minimization for measure-valued images with diffusion spectrum imaging as motivation / D. La Torre, F. Mendivil, O. Michailovich, E.R. Vrscay - In: Image Analysis and Recognition / [a cura di] A. Campilho, F. Karray. - [s.l] : Springer Verlag, 2016. - ISBN 9783319415000. - pp. 131-137 (( Intervento presentato al 13. convegno ICIAR tenutosi a Póvoa de Varzim nel 2016.

Total variation minimization for measure-valued images with diffusion spectrum imaging as motivation

D. La Torre
Primo
;
2016

Abstract

In this paper, we present a notion of total variation for measure-valued images. Our motivation is Diffusion Spectrum Imaging (DSI) in which the diffusion at each voxel is characterized by a probability density function. We introduce a total variation denoising problem for measure-valued images. In the one-dimensional case, this problem (which involves the Monge-Kantorovich metric for measures) can be solved using cumulative distribution functions. In higher dimensions, more computationally expensive methods must be employed.
Computer Science (all); Theoretical Computer Science
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Settore INF/01 - Informatica
2016
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Latorre_Mendivil_Michailovich_Vrscay_LNCS_2016.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 165.18 kB
Formato Adobe PDF
165.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/429331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact