Objectives. Antibodies binding to the surface of fibroblasts (anti-fibroblast antibodies: AFA) have been described in systemic sclerosis (SSc). We aimed to assess the effect of AFA on extracellular matrix (ECM) turnover and whether AFA were associated with anti-topoisomerase-I antibody. Methods. IgG were purified from AFA-positive and AFA-negative sera selected within 20 SSc and 20 healthy individuals, and tested on normal dermal fibroblasts, at protein and mRNA level, for their capacity to induce collagen deposition or degradation. Results. Fibroblasts stimulated with AFA-positive but not with AFA-negative and control IgG showed an increased capacity to digest collagen matrix and produce metalloproteinase-1 (MMP-1) while their production of total collagen, type I collagen and tissue inhibitor of metalloproteinase-1 (TIMP-1) was unaffected. The steady-state mRNA levels of MMP-1, COL1A1 and TIMP-1 paralleled the protein levels. AFA-positive IgG did not induce Smad 2/3 phosphorylation, indicating that this transforming growth factor-β signalling pathway was not involved. IL-1 and tumour necrosis factor (TNF) neutralization did not reverse the enhanced production of MMP-1, suggesting a direct effect of AFA on fibroblasts. Finally, anti-topoisomerase-I antibodies were present in 11 of 12 AFA-negative IgG, and an anti-topoisomerase-I monoclonal antibody failed to enhance MMP-1 production, thus indicating a lack of correlation between AFA and anti-topoisomerase-I antibody. Conclusions. These results indicate that SSc antibodies binding to fibroblasts enhance matrix degradation and MMP production events that may favour inflammation but do not directly impact on fibrosis development.

Anti-fibroblast antibodies detected by cell-based ELISA in systemic sclerosis enhance the collagenolytic activity and matrix metalloproteinase-1 production in dermal fibroblasts / S. Fineschi, F. Cozzi, D. Burger, J.M. Dayer, P.L. Meroni, C. Chizzolini. - In: RHEUMATOLOGY. - ISSN 1462-0324. - 46:12(2007), pp. 1779-1785.

Anti-fibroblast antibodies detected by cell-based ELISA in systemic sclerosis enhance the collagenolytic activity and matrix metalloproteinase-1 production in dermal fibroblasts

P.L. Meroni
Penultimo
;
2007

Abstract

Objectives. Antibodies binding to the surface of fibroblasts (anti-fibroblast antibodies: AFA) have been described in systemic sclerosis (SSc). We aimed to assess the effect of AFA on extracellular matrix (ECM) turnover and whether AFA were associated with anti-topoisomerase-I antibody. Methods. IgG were purified from AFA-positive and AFA-negative sera selected within 20 SSc and 20 healthy individuals, and tested on normal dermal fibroblasts, at protein and mRNA level, for their capacity to induce collagen deposition or degradation. Results. Fibroblasts stimulated with AFA-positive but not with AFA-negative and control IgG showed an increased capacity to digest collagen matrix and produce metalloproteinase-1 (MMP-1) while their production of total collagen, type I collagen and tissue inhibitor of metalloproteinase-1 (TIMP-1) was unaffected. The steady-state mRNA levels of MMP-1, COL1A1 and TIMP-1 paralleled the protein levels. AFA-positive IgG did not induce Smad 2/3 phosphorylation, indicating that this transforming growth factor-β signalling pathway was not involved. IL-1 and tumour necrosis factor (TNF) neutralization did not reverse the enhanced production of MMP-1, suggesting a direct effect of AFA on fibroblasts. Finally, anti-topoisomerase-I antibodies were present in 11 of 12 AFA-negative IgG, and an anti-topoisomerase-I monoclonal antibody failed to enhance MMP-1 production, thus indicating a lack of correlation between AFA and anti-topoisomerase-I antibody. Conclusions. These results indicate that SSc antibodies binding to fibroblasts enhance matrix degradation and MMP production events that may favour inflammation but do not directly impact on fibrosis development.
Settore MED/16 - Reumatologia
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/42914
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact