MECP2 mutations cause a number of neurological disorders of which Rett syndrome (RTT) represents the most thoroughly analysed condition. Many Mecp2 mouse models have been generated through the years; their validity is demonstrated by the presence of a broad spectrum of phenotypes largely mimicking those manifested by RTT patients. These mouse models, between which the C57BL/6 Mecp2tm1.1Bird strain probably represents the most used, enabled to disclose much of the roles of Mecp2. However, small litters with little viability and poor maternal care hamper the maintenance of the colony, thus limiting research on such animals. For this reason, past studies often used Mecp2 mouse models on mixed genetic backgrounds, thus opening questions on whether modifier genes could be responsible for at least part of the described effects. To verify this possibility, and facilitate the maintenance of the Mecp2 colony, we transferred the Mecp2tm1.1Bird allele on the stronger CD1 background. The CD1 strain is easier to maintain and largely recapitulates the phenotypes already described in Mecp2-null mice. We believe that this mouse model will foster the research on RTT.

MeCP2 Related Studies Benefit from the Use of CD1 as Genetic Background / C. Cobolli Gigli, L. Scaramuzza, A. Gandaglia, E. Bellini, M. Gabaglio, D. Parolaro, C. Kilstrup-Nielsen, N. Landsberger, F. Bedogni. - In: PLOS ONE. - ISSN 1932-6203. - 11:4(2016 Apr 20), pp. e0153473.1-e0153473.14.

MeCP2 Related Studies Benefit from the Use of CD1 as Genetic Background

N. Landsberger
;
2016

Abstract

MECP2 mutations cause a number of neurological disorders of which Rett syndrome (RTT) represents the most thoroughly analysed condition. Many Mecp2 mouse models have been generated through the years; their validity is demonstrated by the presence of a broad spectrum of phenotypes largely mimicking those manifested by RTT patients. These mouse models, between which the C57BL/6 Mecp2tm1.1Bird strain probably represents the most used, enabled to disclose much of the roles of Mecp2. However, small litters with little viability and poor maternal care hamper the maintenance of the colony, thus limiting research on such animals. For this reason, past studies often used Mecp2 mouse models on mixed genetic backgrounds, thus opening questions on whether modifier genes could be responsible for at least part of the described effects. To verify this possibility, and facilitate the maintenance of the Mecp2 colony, we transferred the Mecp2tm1.1Bird allele on the stronger CD1 background. The CD1 strain is easier to maintain and largely recapitulates the phenotypes already described in Mecp2-null mice. We believe that this mouse model will foster the research on RTT.
Settore BIO/11 - Biologia Molecolare
20-apr-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cobolli et al 2016.PDF

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/425106
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact