Mitochondrial alterations induced by oncogenes are known to be crucial for tumorigenesis. Ras oncogene leads to proliferative signals through a Raf-1/MEK/ERK kinase cascade, whose components have been found to be also associated with mitochondria. The mitochondrial pepdidyl-prolyl isomerase cyclophilin D (CypD) is an important regulator of the mitochondrial permeability transition and a key player in mitochondria physiology; however, its role in cancer is still unclear. Using cellular and in vivo mouse models, we demonstrated that CypD protein upregulation induced by oncogenic Ras through the Raf-1/MEK/ERK pathway has a deterministic role in tumor progression. In fact, targeting CypD gene expression clearly affected RasV12-induced transformation, as showed by in vitro data on murine NIH3T3 and human MCF10A mammary epithelial cells. In addition, studies in xenograft and K-Ras lung cancer mouse models demonstrated that genetic deletion or pharmacological suppression of CypD efficiently prevented Ras-dependent tumor formation. Furthermore, Erbb2-mediated breast tumorigenesis was similarly prevented by targeting CypD. From a mechanistic point of view, CypD expression was associated with a reduced induction of p21WAF1/CIP1 and p53 functions, unraveling an antagonistic function of CypD on p21–p53-mediated growth suppression. CypD activity is p53 dependent. Interestingly, a physical association between p53 and CypD was detected in mitochondria of MCF10A cells; furthermore, both in vitro and in vivo studies proved that CypD inhibitor-based treatment was able to efficiently impair this interaction, leading to a tumor formation reduction. All together, these findings indicate that the countering effect of CypD on the p53–p21 pathway participates in oncogene-dependent transformation.

Cyclophilin D counteracts P53-mediated growth arrest and promotes Ras tumorigenesis / A. Bigi, E. Beltrami, M. Trinei, M. Stendardo, P.G. Pelicci, M. Giorgio. - In: ONCOGENE. - ISSN 0950-9232. - (2016 Mar 14). [Epub ahead of print] [10.1038/onc.2016.42]

Cyclophilin D counteracts P53-mediated growth arrest and promotes Ras tumorigenesis

P.G. Pelicci
Penultimo
;
2016

Abstract

Mitochondrial alterations induced by oncogenes are known to be crucial for tumorigenesis. Ras oncogene leads to proliferative signals through a Raf-1/MEK/ERK kinase cascade, whose components have been found to be also associated with mitochondria. The mitochondrial pepdidyl-prolyl isomerase cyclophilin D (CypD) is an important regulator of the mitochondrial permeability transition and a key player in mitochondria physiology; however, its role in cancer is still unclear. Using cellular and in vivo mouse models, we demonstrated that CypD protein upregulation induced by oncogenic Ras through the Raf-1/MEK/ERK pathway has a deterministic role in tumor progression. In fact, targeting CypD gene expression clearly affected RasV12-induced transformation, as showed by in vitro data on murine NIH3T3 and human MCF10A mammary epithelial cells. In addition, studies in xenograft and K-Ras lung cancer mouse models demonstrated that genetic deletion or pharmacological suppression of CypD efficiently prevented Ras-dependent tumor formation. Furthermore, Erbb2-mediated breast tumorigenesis was similarly prevented by targeting CypD. From a mechanistic point of view, CypD expression was associated with a reduced induction of p21WAF1/CIP1 and p53 functions, unraveling an antagonistic function of CypD on p21–p53-mediated growth suppression. CypD activity is p53 dependent. Interestingly, a physical association between p53 and CypD was detected in mitochondria of MCF10A cells; furthermore, both in vitro and in vivo studies proved that CypD inhibitor-based treatment was able to efficiently impair this interaction, leading to a tumor formation reduction. All together, these findings indicate that the countering effect of CypD on the p53–p21 pathway participates in oncogene-dependent transformation.
molecular biology; cancer research; genetics
Settore MED/04 - Patologia Generale
14-mar-2016
14-mar-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
onc201642a.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/425009
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact