In acute myeloid leukaemia (AML), nucleophosmin-1 (NPM1) mutations create a nuclear export signal (NES) motif and disrupt tryptophans at NPM1 C-terminus, leading to nucleophosmin accumulation in leukaemic cell cytoplasm. We investigated how nucleophosmin NES motifs (two physiological and one created by the mutation) regulate traffic and interaction of mutated NPM1, NPM1wt and p14ARF. Nucleophosmin export into cytoplasm was maximum when the protein contained all three NES motifs, as naturally occurs in NPM1-mutated AML. The two physiological NES motifs mediated NPM1 homo/heterodimerization, influencing subcellular distribution of NPM1wt, mutated NPM1 and p14ARF in a 'dose-dependent tug of war' fashion. In transfected cells, excess doses of mutant NPM1 relocated completely NPM1wt (and p14ARF) from the nucleoli to the cytoplasm. This distribution pattern was also observed in a proportion of NPM1-mutated AML patients. In transfected cells, excess of NPM1wt (and p14ARF) relocated NPM1 mutant from the cytoplasm to the nucleoli. Notably, this distribution pattern was not observed in AML patients where the mutant was consistently cytoplasmic restricted. These findings reinforce the concept that NPM1 mutants are naturally selected for most efficient cytoplasmic export, pointing to this event as critical for leukaemogenesis. Moreover, they provide a rationale basis for designing small molecules acting at the interface between mutated NPM1 and other interacting proteins.

A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF / N. Bolli, M.F. De Marco, M.P. Martelli, B. Bigerna, A. Pucciarini, R. Rossi, R. Mannucci, N. Manes, V. Pettirossi, S.A. Pileri, I. Nicoletti, B. Falini. - In: LEUKEMIA. - ISSN 0887-6924. - 23:3(2009), pp. 501-509.

A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF

N. Bolli
;
2009

Abstract

In acute myeloid leukaemia (AML), nucleophosmin-1 (NPM1) mutations create a nuclear export signal (NES) motif and disrupt tryptophans at NPM1 C-terminus, leading to nucleophosmin accumulation in leukaemic cell cytoplasm. We investigated how nucleophosmin NES motifs (two physiological and one created by the mutation) regulate traffic and interaction of mutated NPM1, NPM1wt and p14ARF. Nucleophosmin export into cytoplasm was maximum when the protein contained all three NES motifs, as naturally occurs in NPM1-mutated AML. The two physiological NES motifs mediated NPM1 homo/heterodimerization, influencing subcellular distribution of NPM1wt, mutated NPM1 and p14ARF in a 'dose-dependent tug of war' fashion. In transfected cells, excess doses of mutant NPM1 relocated completely NPM1wt (and p14ARF) from the nucleoli to the cytoplasm. This distribution pattern was also observed in a proportion of NPM1-mutated AML patients. In transfected cells, excess of NPM1wt (and p14ARF) relocated NPM1 mutant from the cytoplasm to the nucleoli. Notably, this distribution pattern was not observed in AML patients where the mutant was consistently cytoplasmic restricted. These findings reinforce the concept that NPM1 mutants are naturally selected for most efficient cytoplasmic export, pointing to this event as critical for leukaemogenesis. Moreover, they provide a rationale basis for designing small molecules acting at the interface between mutated NPM1 and other interacting proteins.
hematology; cancer research; anesthesiology and pain medicine
Settore MED/15 - Malattie del Sangue
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/423332
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 59
  • OpenAlex ND
social impact