Tuberculosis nowadays ranks as the second leading cause of death from an infectious disease worldwide. In the last twenty years, this disease has again started to spread mainly for the appearance of multi-drug resistant forms. Therefore, new targets are needed to address the growing emergence of bacterial resistance and for antitubercular drug development. Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis, because it serves as cofactor in many essential biological processes, including DNA biosynthesis and cellular respiration. Bacteria acquire iron chelating non-heme iron from the host using the siderophore mycobactins and carboxymycobactins and by the uptake of heme iron released by damaged red blood cells, through several acquisition systems. Drug discovery focused its efforts in the discovery of MbtI and MbtA inhibitors, which are two enzymes involved in the mycobactin biosynthetic pathway. In particular, MbtI inhibitors have been studied in vitro, while MbtA inhibitors showed activity also in infected mice. Another class of compounds, MmpL3 inhibitors, showed antitubercular activity in vitro and in vivo, but their mechanism of action seems to be off-target. Some compounds inhibiting 4’-phosphopantetheinyl transferase were discovered but not tested on in vivo assays. The available data reported here based on inhibitors and gene deletion studies, suggest that targeting iron acquisition systems could be considered a promising antitubercular strategy. Due to their redundancy, the relative importance of each pathway for Mycobacterium tuberculosis survival has still to be determined. Thus, in vivo studies with new, potent and specific inhibitors are needed to highlight target selection.

Iron acquisition pathways as targets for antitubercular drugs / F. Meneghetti, S. Villa, A. Gelain, D. Barlocco, L. Chiarelli, M. Pasca, L. Costantino. - In: CURRENT MEDICINAL CHEMISTRY. - ISSN 0929-8673. - 23:35(2016), pp. 4009-4026. [10.2174/0929867323666160607223747]

Iron acquisition pathways as targets for antitubercular drugs

F. Meneghetti
Primo
;
S. Villa
Secondo
;
A. Gelain;D. Barlocco;
2016

Abstract

Tuberculosis nowadays ranks as the second leading cause of death from an infectious disease worldwide. In the last twenty years, this disease has again started to spread mainly for the appearance of multi-drug resistant forms. Therefore, new targets are needed to address the growing emergence of bacterial resistance and for antitubercular drug development. Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis, because it serves as cofactor in many essential biological processes, including DNA biosynthesis and cellular respiration. Bacteria acquire iron chelating non-heme iron from the host using the siderophore mycobactins and carboxymycobactins and by the uptake of heme iron released by damaged red blood cells, through several acquisition systems. Drug discovery focused its efforts in the discovery of MbtI and MbtA inhibitors, which are two enzymes involved in the mycobactin biosynthetic pathway. In particular, MbtI inhibitors have been studied in vitro, while MbtA inhibitors showed activity also in infected mice. Another class of compounds, MmpL3 inhibitors, showed antitubercular activity in vitro and in vivo, but their mechanism of action seems to be off-target. Some compounds inhibiting 4’-phosphopantetheinyl transferase were discovered but not tested on in vivo assays. The available data reported here based on inhibitors and gene deletion studies, suggest that targeting iron acquisition systems could be considered a promising antitubercular strategy. Due to their redundancy, the relative importance of each pathway for Mycobacterium tuberculosis survival has still to be determined. Thus, in vivo studies with new, potent and specific inhibitors are needed to highlight target selection.
No
English
Settore CHIM/08 - Chimica Farmaceutica
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
2016
Bentham Science Publishers
23
35
4009
4026
18
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Iron acquisition pathways as targets for antitubercular drugs / F. Meneghetti, S. Villa, A. Gelain, D. Barlocco, L. Chiarelli, M. Pasca, L. Costantino. - In: CURRENT MEDICINAL CHEMISTRY. - ISSN 0929-8673. - 23:35(2016), pp. 4009-4026. [10.2174/0929867323666160607223747]
reserved
Prodotti della ricerca::01 - Articolo su periodico
7
262
Article (author)
Periodico con Impact Factor
F. Meneghetti, S. Villa, A. Gelain, D. Barlocco, L. Chiarelli, M. Pasca, L. Costantino
File in questo prodotto:
File Dimensione Formato  
MS_TB_2016.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/420097
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact