We identify a fragment of Presburger arithmetic enriched with free function symbols and cardinality constraints for interpreted sets, which is amenable to automated analysis. We establish decidability and complexity results for such a fragment and we implement our algorithms. The experiments run in discharging proof obligations coming from invariant checking and bounded model-checking benchmarks show the practical feasibility of our decision procedure.

Counting constraints in flat array fragments / F. Alberti, S. Ghilardi, E. Pagani (LECTURE NOTES IN COMPUTER SCIENCE). - In: Automated Reasoning / [a cura di] N. Olivetti, A. Tiwari. - [s.l] : Springer Verlag, 2016 Jun. - ISBN 9783319402284. - pp. 65-81 (( Intervento presentato al 8. convegno International Joint Conference on Automated Reasoning tenutosi a Coimbra nel 2016 [10.1007/978-3-319-40229-1_6].

Counting constraints in flat array fragments

S. Ghilardi
;
E. Pagani
Ultimo
2016

Abstract

We identify a fragment of Presburger arithmetic enriched with free function symbols and cardinality constraints for interpreted sets, which is amenable to automated analysis. We establish decidability and complexity results for such a fragment and we implement our algorithms. The experiments run in discharging proof obligations coming from invariant checking and bounded model-checking benchmarks show the practical feasibility of our decision procedure.
Boolean-algebra; checking
Settore INF/01 - Informatica
giu-2016
CISUC, Centre for Informatics and Systems of the University of Coimbra
CMUC, Centre for Mathematics, University of Coimbra
CMUP, Centre for Mathematics, University of Porto
et al
FCT, Portuguese Foundation for Science and Technology
University of Coimbra
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
IJCAR2016_PRINTED.pdf

accesso riservato

Descrizione: Articolo completo
Tipologia: Publisher's version/PDF
Dimensione 316.24 kB
Formato Adobe PDF
316.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
735915.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 261.32 kB
Formato Adobe PDF
261.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/419577
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact