Given Y a subspace of a topological vector space X, and an open convex set 0 is an element of A subset of X, we say that the couple (X, Y) has the CE(A)-property if each continuous convex function on A boolean AND Y admits a continuous convex extension defined on A. Using results from our previous paper, we study for given A the relation between the CE(A)-property and the CE(X)-property. As a corollary we obtain that (X, Y) has the CE(A)-property for each A, provided (X, Y) has the CE(X)-property and Y is "conditionally separable". This applies, for instance, if X is locally convex and conditionally separable. Other results concern either the CE(A)-property for sets A of special forms, or the CE(A)-property for each A where X is a normed space with X/Y separable. In the last section, we point out connections between the CE(X)-property and extendability of certain continuous linear operators. This easily yields a generalization of an extension theorem of Rosenthal, and another result of the same type.
Extension of continuous convex functions from subspaces II / C.A. De Bernardi, L. Vesely. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 22:1(2015), pp. 101-116.
Extension of continuous convex functions from subspaces II
C.A. De Bernardi;L. Vesely
2015
Abstract
Given Y a subspace of a topological vector space X, and an open convex set 0 is an element of A subset of X, we say that the couple (X, Y) has the CE(A)-property if each continuous convex function on A boolean AND Y admits a continuous convex extension defined on A. Using results from our previous paper, we study for given A the relation between the CE(A)-property and the CE(X)-property. As a corollary we obtain that (X, Y) has the CE(A)-property for each A, provided (X, Y) has the CE(X)-property and Y is "conditionally separable". This applies, for instance, if X is locally convex and conditionally separable. Other results concern either the CE(A)-property for sets A of special forms, or the CE(A)-property for each A where X is a normed space with X/Y separable. In the last section, we point out connections between the CE(X)-property and extendability of certain continuous linear operators. This easily yields a generalization of an extension theorem of Rosenthal, and another result of the same type.File | Dimensione | Formato | |
---|---|---|---|
ExConFun2.pdf
accesso riservato
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
338.07 kB
Formato
Adobe PDF
|
338.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.