The structural behaviour of bikitaite, Li2(Al2Si4O12). 2H2O, was investigated under hydrostatic pressure using X-ray single-crystal diffraction data. A Merrill-Bassett diamond anvil cell was mounted with glycerol, as non penetrating pressure-transmitting medium, ruby chips and a small crystal of quartz as the calibrant. A strong anisotropic compression was observed by linear regressions of lattice parameters against P, bikitaite being softer along the c axis (βc=9.3(1) 10-3 GPa-1), than along b (βb = 6.6(1) 10-3 GPa-1) and a (βa = 2.4(1) 10-3 GPa-1) (βa: βb: βc=1: 2.75 :3.9 . Fitting the cell-volume - pressure data to a second order Birch-Murnaghan equation of state, as indicated by the finite strain-stress plot, yielded K0 = 44.2(4) GPa, with K' = 4 and V0 = 295.58(2) Å3. The evolution of the bikitaite structure with P was studied by comparing the results of refinements with data collected at room conditions, at 3.2 GPa and after decompression. The structure can be described as sheets of six-membered rings parallel to (001), connected by pyroxene-like chains. 8-ring and 5-ring channels run along [010] and inside the 8-ring channel there is a onedimensional chain of water molecules, which is linked to the framework through the extra-framework Li atoms. Under pressure, the kinking of the pyroxene-like chain decreased the free diameters of the 5-ring channels, strongly reducing the distance between the ab planes. On the contrary, the tridymite-like planes with 6-membered rings were more rigid. The positions of the extra-framework cations and water were maintained at HP even though the configuration of the water chains changed slightly: the distances between the water molecules decreased, whereas the kinking angle of the chain increased.

Effects of pressure on the structure of bikitaite / P. Comodi, G.D. Gatta, P.F. Zanazzi. - In: EUROPEAN JOURNAL OF MINERALOGY. - ISSN 0935-1221. - 15:2(2003), pp. 247-255. [10.1127/0935-1221/2003/0015-0247]

Effects of pressure on the structure of bikitaite

G.D. Gatta
Secondo
;
2003

Abstract

The structural behaviour of bikitaite, Li2(Al2Si4O12). 2H2O, was investigated under hydrostatic pressure using X-ray single-crystal diffraction data. A Merrill-Bassett diamond anvil cell was mounted with glycerol, as non penetrating pressure-transmitting medium, ruby chips and a small crystal of quartz as the calibrant. A strong anisotropic compression was observed by linear regressions of lattice parameters against P, bikitaite being softer along the c axis (βc=9.3(1) 10-3 GPa-1), than along b (βb = 6.6(1) 10-3 GPa-1) and a (βa = 2.4(1) 10-3 GPa-1) (βa: βb: βc=1: 2.75 :3.9 . Fitting the cell-volume - pressure data to a second order Birch-Murnaghan equation of state, as indicated by the finite strain-stress plot, yielded K0 = 44.2(4) GPa, with K' = 4 and V0 = 295.58(2) Å3. The evolution of the bikitaite structure with P was studied by comparing the results of refinements with data collected at room conditions, at 3.2 GPa and after decompression. The structure can be described as sheets of six-membered rings parallel to (001), connected by pyroxene-like chains. 8-ring and 5-ring channels run along [010] and inside the 8-ring channel there is a onedimensional chain of water molecules, which is linked to the framework through the extra-framework Li atoms. Under pressure, the kinking of the pyroxene-like chain decreased the free diameters of the 5-ring channels, strongly reducing the distance between the ab planes. On the contrary, the tridymite-like planes with 6-membered rings were more rigid. The positions of the extra-framework cations and water were maintained at HP even though the configuration of the water chains changed slightly: the distances between the water molecules decreased, whereas the kinking angle of the chain increased.
zeolite; bikitaite; single-crystal X-ray diffraction; high-pressure; compressibility
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
2003
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bikitaite.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/410031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 31
social impact