In the EU-funded CROPS project robots are developed for site-specific spraying and selective harvesting of fruit and fruit vegetables. The robots are being designed to harvest crops, such as greenhouse vegetables, apples, grapes and for canopy spraying in orchards and for precision target spraying in grape vines. Attention is paid to the detection of obstacles for autonomous navigation in a safe way in plantations and forests. For the different applications, platforms were built. Sensing systems and vision algorithms have been developed. For software the Robot Operating System is used. A 9 degrees of freedom manipulator was designed and tested for sweet-pepper harvesting, apple harvesting and in close range spraying. For the applications different end-effectors were designed and tested. For sweet pepper a platform that can move in between the crop rows on the common greenhouse rail system which also serves as heating pipes was built. The apple harvesting platform is based on a current mechanical grape harvester. In discussion with growers so-called ‘walls of fruit trees’ have been designed which bring robots closer to the practice. A canopy-optimised sprayer has been designed as a trailed sprayer with a centrifugal blower. All the applications have been tested under practical conditions.

CROPS : Clever robots for crops / J. Bontsema, J. Hemming, E. Pekkeriet, W. Saeys, Y. Edan, A. Shapiro, M. Hočevar, R. Oberti, M. Armada, H. Ulbrich, J. Baur, B. Debilde, S. Best, S. Evain, W. Gauchel, T. Hellström, O. Ringdahl. - In: ENGINEERING & TECHNOLOGY REFERENCE. - ISSN 2056-4007. - (2015 Aug 03). [10.1049/etr.2015.0015]

CROPS : Clever robots for crops

R. Oberti;
2015

Abstract

In the EU-funded CROPS project robots are developed for site-specific spraying and selective harvesting of fruit and fruit vegetables. The robots are being designed to harvest crops, such as greenhouse vegetables, apples, grapes and for canopy spraying in orchards and for precision target spraying in grape vines. Attention is paid to the detection of obstacles for autonomous navigation in a safe way in plantations and forests. For the different applications, platforms were built. Sensing systems and vision algorithms have been developed. For software the Robot Operating System is used. A 9 degrees of freedom manipulator was designed and tested for sweet-pepper harvesting, apple harvesting and in close range spraying. For the applications different end-effectors were designed and tested. For sweet pepper a platform that can move in between the crop rows on the common greenhouse rail system which also serves as heating pipes was built. The apple harvesting platform is based on a current mechanical grape harvester. In discussion with growers so-called ‘walls of fruit trees’ have been designed which bring robots closer to the practice. A canopy-optimised sprayer has been designed as a trailed sprayer with a centrifugal blower. All the applications have been tested under practical conditions.
Settore AGR/09 - Meccanica Agraria
3-ago-2015
http://digital-library.theiet.org/content/reference/10.1049/etr.2015.0015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/398681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact