The structural adaptability of the globin fold has been highlighted by the recent discovery of the 2-on-2 haemoglobins, of neuroglobin and cytoglobin. Protoglobin fromMethanosarcina acetivorans C2A—a strictly anaerobic methanogenic Archaea—is, to the best of our knowledge, the latest entry adding new variability and functional complexity to the haemoglobin (Hb) superfamily. Here, we report the 1.3A° crystal structure of oxygenated M. acetivorans protoglobin, together with the first insight into its ligand-binding properties. We show that, contrary to all known globins, protoglobin-specific loops and an amino-terminal extension completely bury the haem within the protein matrix. Access of O2, CO and NO to the haem is granted by the protoglobinspecific apolar tunnels reaching the haem distal site from locations at the B/G and B/E helix interfaces. Functionally, M. acetivorans dimeric protoglobin shows a selectivity ratio for O2/CO binding to the haem that favours O2 ligation and anticooperativity in ligand binding. Both properties are exceptional within the Hb superfamily.

Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haem reactivity / M. Nardini, A. Pesce, L. Thijs, J.A. Saito, S. Dewilde, M. Alam, P. Ascenzi, M. Coletta, L. Moens, M. Bolognesi. - In: EMBO REPORTS. - ISSN 1469-221X. - 9:2(2008), pp. 157-163.

Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haem reactivity

M. Nardini
Primo
;
M. Bolognesi
Ultimo
2008

Abstract

The structural adaptability of the globin fold has been highlighted by the recent discovery of the 2-on-2 haemoglobins, of neuroglobin and cytoglobin. Protoglobin fromMethanosarcina acetivorans C2A—a strictly anaerobic methanogenic Archaea—is, to the best of our knowledge, the latest entry adding new variability and functional complexity to the haemoglobin (Hb) superfamily. Here, we report the 1.3A° crystal structure of oxygenated M. acetivorans protoglobin, together with the first insight into its ligand-binding properties. We show that, contrary to all known globins, protoglobin-specific loops and an amino-terminal extension completely bury the haem within the protein matrix. Access of O2, CO and NO to the haem is granted by the protoglobinspecific apolar tunnels reaching the haem distal site from locations at the B/G and B/E helix interfaces. Functionally, M. acetivorans dimeric protoglobin shows a selectivity ratio for O2/CO binding to the haem that favours O2 ligation and anticooperativity in ligand binding. Both properties are exceptional within the Hb superfamily.
archaea protein; haemoprotein structure; methanogenesis; protein matrix tunnels; protoglobin
Settore BIO/10 - Biochimica
2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/39710
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 45
social impact