By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21 cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.
Synthetic HI observations of spiral structure in the outer disk in galaxies / S.A. Khoperskov, G. Bertin. - In: JOURNAL OF PLASMA PHYSICS. - ISSN 0022-3778. - 81:6(2015 Dec), pp. 495810607.1-495810607.14. [10.1017/S0022377815001439]
Synthetic HI observations of spiral structure in the outer disk in galaxies
G. BertinUltimo
2015
Abstract
By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21 cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.File | Dimensione | Formato | |
---|---|---|---|
1511.06299v1.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.