Modeling flow and transport in porous media requires the management of complexities related both to physical processes and to subsurface heterogeneity. A thorough approach needs a great number of spatially-distributed phenomenological parameters, which are seldom measured in the field. For instance, modeling a phreatic aquifer under high water extraction rates is very challenging, because it requires the simulation of variably-saturated flow. 3D steady groundwater flow is modeled with YAGMod (yet another groundwater flow model), a model based on a finite-difference conservative scheme and implemented in a computer code developed in Fortran90. YAGMod simulates also the presence of partially-saturated or dry cells. The proposed algorithm and other alternative methods developed to manage dry cells in the case of depleted aquifers are analyzed and compared to a simple test. Different approaches yield different solutions, among which, it is not possible to select the best one on the basis of physical arguments. A possible advantage of YAGMod is that no additional non-physical parameter is needed to overcome the numerical difficulties arising to handle drained cells. YAGMod also includes a module that allows one to identify the conductivity field for a phreatic aquifer by solving an inverse problem with the comparison model method.
Modeling groundwater flow in heterogeneous porous media with YAGMod / L. Cattaneo, A. Comunian, G. de Filippis, M. Giudici, C. Vassena. - In: COMPUTATION. - ISSN 2079-3197. - 4:1(2016), pp. 2.1-2.19. [10.3390/computation4010002]
Modeling groundwater flow in heterogeneous porous media with YAGMod
L. CattaneoPrimo
;A. ComunianSecondo
;G. de Filippis;M. GiudiciPenultimo
;C. VassenaUltimo
2016
Abstract
Modeling flow and transport in porous media requires the management of complexities related both to physical processes and to subsurface heterogeneity. A thorough approach needs a great number of spatially-distributed phenomenological parameters, which are seldom measured in the field. For instance, modeling a phreatic aquifer under high water extraction rates is very challenging, because it requires the simulation of variably-saturated flow. 3D steady groundwater flow is modeled with YAGMod (yet another groundwater flow model), a model based on a finite-difference conservative scheme and implemented in a computer code developed in Fortran90. YAGMod simulates also the presence of partially-saturated or dry cells. The proposed algorithm and other alternative methods developed to manage dry cells in the case of depleted aquifers are analyzed and compared to a simple test. Different approaches yield different solutions, among which, it is not possible to select the best one on the basis of physical arguments. A possible advantage of YAGMod is that no additional non-physical parameter is needed to overcome the numerical difficulties arising to handle drained cells. YAGMod also includes a module that allows one to identify the conductivity field for a phreatic aquifer by solving an inverse problem with the comparison model method.File | Dimensione | Formato | |
---|---|---|---|
computation-04-00002.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.