Planck has mapped the microwave sky in nine frequency bands between 30 and 857 GHz in temperature and seven bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive a consistent set of full-sky astrophysical component maps. For the temperature analysis, we combine the Planck observations with the 9-year WMAP sky maps and the Haslam et al. 408 MHz map to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided with angular resolutions varying between 7.5 arcmin and 1 deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4 uK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analog-to-digital conversion, and very long time constant corrections, all of which are expected to improve in the near future.

Planck 2015 results. X. Diffuse component separation : Foreground maps / R. Adam, P.A.R. Ade, N. Aghanim, M.I.R. Alves, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, J.G. Bartlett, N. Bartolo, E. Battaner, K. Benabed, A. Benoît, A. Benoit Lévy, J.P. Bernard, M. Bersanelli, P. Bielewicz, A. Bonaldi, L. Bonavera, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R.C. Butler, E. Calabrese, J.F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R.R. Chary, H.C. Chiang, P.R. Christensen, D.L. Clements, S. Colombi, L.P.L. Colombo, C. Combet, F. Couchot, A. Coulais, B.P. Crill, A. Curto, F. Cuttaia, L. Danese, R.D. Davies, R.J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F.X. Désert, C. Dickinson, J.M. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, E. Falgarone, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, T. Ghosh, M. Giard, Y. Giraud Héraud, E. Gjerløw, J. González Nuevo, K.M. Górski, S. Gratton, A. Gregorio, A. Gruppuso, J.E. Gudmundsson, F.K. Hansen, D. Hanson, D.L. Harrison, G. Helou, S. Henrot Versillé, C. Hernández Monteagudo, D. Herranz, S.R. Hildebrandt, E. Hivon, M. Hobson, W.A. Holmes, A. Hornstrup, W. Hovest, K.M. Huffenberger, G. Hurier, A.H. Jaffe, T.R. Jaffe, W.C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T.S. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki Suonio, G. Lagache, A. Lähteenmäki, J.M. Lamarre, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, J.P. Leahy, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P.B. Lilje, M. Linden Vørnle, M. López Caniego, P.M. Lubin, J.F. Macías Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, D.J. Marshall, P.G. Martin, E. Martínez González, S. Masi, S. Matarrese, P. Mazzotta, P. Mcgehee, P.R. Meinhold, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M.A. Miville Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J.A. Murphy, P. Naselsky, F. Nati, P. Natoli, C.B. Netterfield, H.U. Nørgaard Nielsen, F. Noviello, D. Novikov, I. Novikov, E. Orlando, C.A. Oxborrow, F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T.J. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, G.W. Pratt, G. Prézeau, S. Prunet, J.L. Puget, J.P. Rachen, W.T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, J.A. Rubiño Martín, B. Rusholme, M. Sandri, D. Santos, M. Savelainen, G. Svini, D. Scott, M.D. Seiffert, E.P.S. Shellard, L.D. Spencer, V. Stolyarov, R. Stompor, A.W. Strong, R. Sudiwala, R. Sunyaev, D. Sutton, A.S. Suur Uski, J.F. Sygnet, J.A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, G. Umana, L. Valenziano, J. Valiviita, B. Van Tent, P. Vielva, F. Villa, L.A. Wade, B.D. Wandelt, I.K. Wehus, A. Wilkinson, D. Yvon, A. Zacchei, A. Zonca. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 1432-0746. - (2016 Feb 22). [Epub ahead of print]

Planck 2015 results. X. Diffuse component separation : Foreground maps

M. Bersanelli
Primo
;
D. Maino
Secondo
;
A. Mennella
Penultimo
;
M. Tomasi
Ultimo
;
2016

Abstract

Planck has mapped the microwave sky in nine frequency bands between 30 and 857 GHz in temperature and seven bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive a consistent set of full-sky astrophysical component maps. For the temperature analysis, we combine the Planck observations with the 9-year WMAP sky maps and the Haslam et al. 408 MHz map to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided with angular resolutions varying between 7.5 arcmin and 1 deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4 uK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analog-to-digital conversion, and very long time constant corrections, all of which are expected to improve in the near future.
astro-ph.CO; astro-ph.CO
Settore FIS/05 - Astronomia e Astrofisica
22-feb-2016
10.1051/0004-6361/201525967
Article (author)
File in questo prodotto:
File Dimensione Formato  
10. Planck 2015 results. X. Diffuse component separation: Foreground maps.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 96.37 MB
Formato Adobe PDF
96.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/387861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 40
social impact