This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5 year HFI mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the "orbital dipole". This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of 2.7255 +/- 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 +/- 1.5 \mu K) which is approximatively 1\sigma\ higher than the WMAP measurement with a direction that is consistent between both experiments. We describe the pipeline used to produce the maps of intensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.

Planck 2015 results : VIII High Frequency Instrument data processing : calibration and maps / R. Adam, P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, N. Bartolo, E. Battaner, K. Benabed, A. Benôıt, A. Benoit Lévy, J.P. Bernard, M. Bersanelli, B. Bertincourt, P. Bielewicz, J.J. Bock, L. Bonavera, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, E. Calabrese, J.F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, H.C. Chiang, P.R. Christensen, D.L. Clements, S. Colombi, L.P.L. Colombo, C. Combet, F. Couchot, A. Coulais, B.P. Crill, A. Curto, F. Cuttaia, L. Danese, R.D. Davies, R.J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, J.M. Delouis, F.X. Désert, J.M. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, E. Falgarone, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, T. Ghosh, M. Giard, Y. Giraud Héraud, E. Gjerløw, J. González Nuevo, K.M. Górski, S. Gratton, A. Gruppuso, J.E. Gudmundsson, F.K. Hansen, D. Hanson, D.L. Harrison, S. Henrot Versillé, D. Herranz, S.R. Hildebrandt, E. Hivon, M. Hobson, W.A. Holmes, A. Hornstrup, W. Hovest, K.M. Huffenberger, G. Hurier, A.H. Jaffe, T.R. Jaffe, W.C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T.S. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki Suonio, G. Lagache, J.M. Lamarre, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, J.P. Leahy, E. Lellouch, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P.B. Lilje, M. Linden Vørnle, M. López Caniego, P.M. Lubin, J.F. Macías Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, M. Maris, P.G. Martin, E. Martínez González, S. Masi, S. Matarrese, P. Mcgehee, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M.A. Miville Deschênes, A. Moneti, L. Montier, R. Moreno, G. Morgante, D. Mortlock, A. Moss, S. Mottet, D. Munshi, J.A. Murphy, P. Naselsky, F. Nati, P. Natoli, C.B. Netterfield, H.U. Nørgaard Nielsen, F. Noviello, D. Novikov, I. Novikov, C.A. Oxborrow, F. Paci, L. Pagano, F. Pajot, D. Paoletti, F. Pasian, G. Patanchon, T.J. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, G.W. Pratt, G. Prézeau, S. Prunet, J.L. Puget, J.P. Rachen, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, B. Rusholme, M. Sandri, D. Santos, A. Sauvé, M. Savelainen, G. Savini, D. Scott, M.D. Seiffert, E.P.S. Shellard, L.D. Spencer, V. Stolyarov, R. Stompor, R. Sudiwala, D. Sutton, A.S. Suur Uski, J.F. Sygnet, J.A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, L.A. Wade, B.D. Wandelt, R. Watson, I.K. Wehus, D. Yvon, A. Zacchei, A. Zonca. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 594(2016 Oct), pp. A8.1-A8.27.

Planck 2015 results : VIII High Frequency Instrument data processing : calibration and maps

M. Bersanelli
Ultimo
;
L.P.L. Colombo;D. Maino
Primo
;
A. Mennella;M. Tomasi
Secondo
;
2016

Abstract

This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5 year HFI mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the "orbital dipole". This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of 2.7255 +/- 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 +/- 1.5 \mu K) which is approximatively 1\sigma\ higher than the WMAP measurement with a direction that is consistent between both experiments. We describe the pipeline used to produce the maps of intensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.
astro-ph.CO; astro-ph.CO; astro-ph.IM
Settore FIS/05 - Astronomia e Astrofisica
ott-2016
ott-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
09. Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 6.92 MB
Formato Adobe PDF
6.92 MB Adobe PDF Visualizza/Apri
aa25820-15.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 22.99 MB
Formato Adobe PDF
22.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/387834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 184
social impact