Convergent plate margins typically experience a transition from subduction to collision dynamics as massive continental blocks enter the subduction channel. Studies of high-pressure rocks indicate that tectonic fragments are rapidly exhumed from eclogite facies to mid-crustal levels, but the details of such dynamics are controversial. To understand the dynamics of a subduction channel we report the results of a petrochronological study from the central Sesia Zone, a key element of the internal Western Alps. This comprises two polymetamorphic basement complexes (Eclogitic Micaschist Complex and Gneiss Minuti Complex) and a thin, dismembered cover sequence (Scalaro Unit) associated with pre-Alpine metagabbros and metasediments (Bonze Unit). Structurally controlled samples from three of these units (Eclogitic Micaschist Complex and Scalaro-Bonze Units) yield unequivocal petrological and geochronological evidence of two distinct high-pressure stages. Ages (U-Th-Pb) of growth zones in accessory allanite and zircon, combined with inclusion and textural relationships, can be tied to the multi-stage evolution of single samples. Two independent tectono-metamorphic 'slices' showing a coherent metamorphic evolution during a given time interval have been recognized: the Fondo slice (which includes Scalaro and Bonze rocks) and the Druer slice (belonging to the Eclogitic Micaschist Complex). The new data indicate separate stages of deformation at eclogite-facies conditions for each recognized independent kilometer-sized tectono-metamorphic slice, between ~85 and 60 Ma, with evidence of intermittent decompression (ΔP ~ 0.5 GPa) within only the Fondo slice. The evolution path of the Druer slice indicates a different P-T-time evolution with prolonged eclogite-facies metamorphism between ~85 and 75 Ma. Our approach, combining structural, petrological and geochronological techniques, yields field-based constraints on the duration and rates of dynamics within a subduction channel.

Multiple Metamorphic Stages within an Eclogite-facies Terrane (Sesia Zone, Western Alps) Revealed by Th–U–Pb Petrochronology / D. Regis, D. Rubatto, J. Darling, B. Cenki Tok, M. Zucali, M. Engi. - In: JOURNAL OF PETROLOGY. - ISSN 0022-3530. - 55:7(2014), pp. 1429-1456. [10.1093/petrology/egu029]

Multiple Metamorphic Stages within an Eclogite-facies Terrane (Sesia Zone, Western Alps) Revealed by Th–U–Pb Petrochronology

M. Zucali;
2014

Abstract

Convergent plate margins typically experience a transition from subduction to collision dynamics as massive continental blocks enter the subduction channel. Studies of high-pressure rocks indicate that tectonic fragments are rapidly exhumed from eclogite facies to mid-crustal levels, but the details of such dynamics are controversial. To understand the dynamics of a subduction channel we report the results of a petrochronological study from the central Sesia Zone, a key element of the internal Western Alps. This comprises two polymetamorphic basement complexes (Eclogitic Micaschist Complex and Gneiss Minuti Complex) and a thin, dismembered cover sequence (Scalaro Unit) associated with pre-Alpine metagabbros and metasediments (Bonze Unit). Structurally controlled samples from three of these units (Eclogitic Micaschist Complex and Scalaro-Bonze Units) yield unequivocal petrological and geochronological evidence of two distinct high-pressure stages. Ages (U-Th-Pb) of growth zones in accessory allanite and zircon, combined with inclusion and textural relationships, can be tied to the multi-stage evolution of single samples. Two independent tectono-metamorphic 'slices' showing a coherent metamorphic evolution during a given time interval have been recognized: the Fondo slice (which includes Scalaro and Bonze rocks) and the Druer slice (belonging to the Eclogitic Micaschist Complex). The new data indicate separate stages of deformation at eclogite-facies conditions for each recognized independent kilometer-sized tectono-metamorphic slice, between ~85 and 60 Ma, with evidence of intermittent decompression (ΔP ~ 0.5 GPa) within only the Fondo slice. The evolution path of the Druer slice indicates a different P-T-time evolution with prolonged eclogite-facies metamorphism between ~85 and 75 Ma. Our approach, combining structural, petrological and geochronological techniques, yields field-based constraints on the duration and rates of dynamics within a subduction channel.
Pressure cycles; Sesia zone; Subduction channel; Tectonometamorphic slice; Yo-yo subduction
Settore GEO/03 - Geologia Strutturale
Settore GEO/07 - Petrologia e Petrografia
2014
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/387448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 71
social impact