We study some extremal properties of the self-similar solutions of certain onedimensional kinetic models of granular flows, usually known with the name of nonlinear friction equations. This analysis, inspired by some recent results on nonlinear diffusion equations [6], allows to obtain various sharp inequalities, which can be fruitfully used to better clarify the large-time behavior of the solution density.

Sharp cooling rates in nonlinear friction equations / G. Furioli, A. Pulvirenti, E. Terraneo. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 27:1(2016), pp. 127-146.

Sharp cooling rates in nonlinear friction equations

E. Terraneo
Ultimo
2016

Abstract

We study some extremal properties of the self-similar solutions of certain onedimensional kinetic models of granular flows, usually known with the name of nonlinear friction equations. This analysis, inspired by some recent results on nonlinear diffusion equations [6], allows to obtain various sharp inequalities, which can be fruitfully used to better clarify the large-time behavior of the solution density.
Boltzmann equation; granular gases; long-time behavior of solution
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Furiolietal2016.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 112.7 kB
Formato Adobe PDF
112.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/387091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact