Monte Carlo (MC) simulation of radiation transport is considered to be one of the most accurate methods of radiation therapy dose calculation. A basic requirement for MC treatment planning is a detailed knowledge of the characteristics of radiation beam generated from medical linear accelerators (LINACs). One of the most important input parameters is the photon fluence of the beam, usually not determinable experimentally. Thus, an MC simulation code based on the PENELOPE package was developed in order to survey the influence of the incident spectrum on the in-phantom dose distributions. Different spectra for the incident photon fluence have been considered in order to establish the most adequate one. The resulting planned dose distributions have been compared with those determined experimentally with ionization chamber measurements and gel dosimeter layers analyzed with optical technique. The specific gel composition has been implemented in the MC simulation code. Comparisons between experimental measurements, approximated simulations (water) and specific simulations (gel composition) have been performed.

An optimized Monte Carlo (PENELOPE) code for the characterization of gel-layer detectors in radiotherapy / G. Castellano, D. Brusa, M. Carrara, G. Gambarini, M.A. Valente. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 580:1(2007), pp. 502-505.

An optimized Monte Carlo (PENELOPE) code for the characterization of gel-layer detectors in radiotherapy

M. Carrara;G. Gambarini
Penultimo
;
M.A. Valente
Ultimo
2007

Abstract

Monte Carlo (MC) simulation of radiation transport is considered to be one of the most accurate methods of radiation therapy dose calculation. A basic requirement for MC treatment planning is a detailed knowledge of the characteristics of radiation beam generated from medical linear accelerators (LINACs). One of the most important input parameters is the photon fluence of the beam, usually not determinable experimentally. Thus, an MC simulation code based on the PENELOPE package was developed in order to survey the influence of the incident spectrum on the in-phantom dose distributions. Different spectra for the incident photon fluence have been considered in order to establish the most adequate one. The resulting planned dose distributions have been compared with those determined experimentally with ionization chamber measurements and gel dosimeter layers analyzed with optical technique. The specific gel composition has been implemented in the MC simulation code. Comparisons between experimental measurements, approximated simulations (water) and specific simulations (gel composition) have been performed.
English
Monte Carlo simulation ; external radiotherapy ; Fricke gel dosimetry
Settore FIS/01 - Fisica Sperimentale
Articolo
Sì, ma tipo non specificato
2007
Elsevier
580
1
502
505
Periodico con rilevanza internazionale
info:eu-repo/semantics/article
An optimized Monte Carlo (PENELOPE) code for the characterization of gel-layer detectors in radiotherapy / G. Castellano, D. Brusa, M. Carrara, G. Gambarini, M.A. Valente. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 580:1(2007), pp. 502-505.
none
Prodotti della ricerca::01 - Articolo su periodico
5
262
Article (author)
si
G. Castellano, D. Brusa, M. Carrara, G. Gambarini, M.A. Valente
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/38357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact