In this paper we show that, under suitable assumptions, the solutions to the approximating initial and boundary value problems (Pε) (cf. introduction) converge in Lp((0,T);Ls(Ω)), for suitable indexes p[1,+∞) and s[1,+∞), to the solution to the limit problem (P0). The last two Sections 4–5 are devoted to a similar approximation result, in a Banach-space framework, and involve a generalization of the kernels k, h and operator A.

Approximation of solutions to linear integro-differential parabolic equations in L^p-spaces / A. Lorenzi, F. Messina. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 333:2(2007), pp. 642-656.

Approximation of solutions to linear integro-differential parabolic equations in L^p-spaces

A. Lorenzi
Primo
;
F. Messina
Ultimo
2007

Abstract

In this paper we show that, under suitable assumptions, the solutions to the approximating initial and boundary value problems (Pε) (cf. introduction) converge in Lp((0,T);Ls(Ω)), for suitable indexes p[1,+∞) and s[1,+∞), to the solution to the limit problem (P0). The last two Sections 4–5 are devoted to a similar approximation result, in a Banach-space framework, and involve a generalization of the kernels k, h and operator A.
Linear parabolic integro-partial differential equations ; Limit problems ; Analytic semigroups
Settore MAT/05 - Analisi Matematica
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/37458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact