We predict the phase diagram of CaSiO3 perovskite, finding the tetragonal I4∕mcm structure transforming to cubic Pm3̅ m with increasing temperature. The transition temperature is 1150 K at 0 GPa, and 2450 K at 140 GPa. The c∕a ratio of the tetragonal structure is 1.018 at 100 GPa and increases on compression, as does the static enthalpy difference between tetragonal and cubic structures. The elastic constants of the tetragonal phase at static conditions differ substantially from those of the cubic phase with the Voigt-Reuss-Hill shear modulus 29% less at 100 GPa. Computations are based on density functional theory in the local density and generalized gradient approximations. The phase diagram and high temperature elastic constants are computed using a mean field theory with parameters of the Landau potential determined via structurally constrained density functional theory calculations. We present a simple scheme for systematically searching for the ground state over all perovskite structures derivable from octahedral rotations within the context of symmetry-preserving relaxation, which confirms tetragonal I4∕mcm as the ground state in density functional theory. We argue that the experimental x-ray diffraction pattern can be explained by the I4∕mcm phase by considering the development of preferred orientation under uniaxial compression.

Phase stability and shear softening in CaSiO3 perovskite at high pressure / L. Stixrude, C. Lithgow-Bertelloni, B. Kiefer, P. Fumagalli. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 75:2(2007), pp. 024108.024108-1-024108.024108-10. [10.1103/PhysRevB.75.024108]

Phase stability and shear softening in CaSiO3 perovskite at high pressure

P. Fumagalli
Ultimo
2007

Abstract

We predict the phase diagram of CaSiO3 perovskite, finding the tetragonal I4∕mcm structure transforming to cubic Pm3̅ m with increasing temperature. The transition temperature is 1150 K at 0 GPa, and 2450 K at 140 GPa. The c∕a ratio of the tetragonal structure is 1.018 at 100 GPa and increases on compression, as does the static enthalpy difference between tetragonal and cubic structures. The elastic constants of the tetragonal phase at static conditions differ substantially from those of the cubic phase with the Voigt-Reuss-Hill shear modulus 29% less at 100 GPa. Computations are based on density functional theory in the local density and generalized gradient approximations. The phase diagram and high temperature elastic constants are computed using a mean field theory with parameters of the Landau potential determined via structurally constrained density functional theory calculations. We present a simple scheme for systematically searching for the ground state over all perovskite structures derivable from octahedral rotations within the context of symmetry-preserving relaxation, which confirms tetragonal I4∕mcm as the ground state in density functional theory. We argue that the experimental x-ray diffraction pattern can be explained by the I4∕mcm phase by considering the development of preferred orientation under uniaxial compression.
English
Settore GEO/07 - Petrologia e Petrografia
Articolo
Sì, ma tipo non specificato
2007
75
2
024108
024108-1
024108-10
Periodico con rilevanza internazionale
info:eu-repo/semantics/article
Phase stability and shear softening in CaSiO3 perovskite at high pressure / L. Stixrude, C. Lithgow-Bertelloni, B. Kiefer, P. Fumagalli. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 75:2(2007), pp. 024108.024108-1-024108.024108-10. [10.1103/PhysRevB.75.024108]
none
Prodotti della ricerca::01 - Articolo su periodico
4
262
Article (author)
no
L. Stixrude, C. Lithgow Bertelloni, B. Kiefer, P. Fumagalli
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/37311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 71
social impact