Renewable poly(amidoamine)/hemicellulose hydrogels were prepared from O-acetylated galactoglucomannan (AcGGM)-rich biomass and shown to display a significantly high adsorption capacity for Cu2+, Cd2+, Pb-2+,Pb- Zn2+, Ni2+, Co2+, and . Two different acrylamido end-capped poly(amidoamine) oligomers (PAA) were prepared and covalently immobilized onto an in situ formed polysaccharide network via water-based free radical graft copolymerization and cross-linking. The synthetic approach was shown to be viable when using a highly purified AcGGM or a crude spruce hydrolysate, an AcGGM and lignin containing biomass fraction as a reactant. Homogeneous reaction mixtures were obtained in both cases with polysaccharide contents up to 20% by weight. Oscillatory shear measurements indicated a predominantly solid-like behavior of the hydrogels with an increase in shear storage modulus with increasing cross-link density. The mechanical integrity of the PAA/hemicellulose hydrogels showed higher water swelling capacity and less fragility than the parent PAA hydrogels and they retained the heavy metal ion absorption ability of the PAA component, even in the presence of the least purified hemicellulose fraction.

Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption / E. Ferrari, E. Ranucci, U. Edlund, A.C. Albertsson. - In: JOURNAL OF APPLIED POLYMER SCIENCE. - ISSN 0021-8995. - 132:12(2015 Mar), pp. 41695.1-41695.13. [10.1002/app.41695]

Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption

E. Ferrari
Primo
;
E. Ranucci
Secondo
;
2015

Abstract

Renewable poly(amidoamine)/hemicellulose hydrogels were prepared from O-acetylated galactoglucomannan (AcGGM)-rich biomass and shown to display a significantly high adsorption capacity for Cu2+, Cd2+, Pb-2+,Pb- Zn2+, Ni2+, Co2+, and . Two different acrylamido end-capped poly(amidoamine) oligomers (PAA) were prepared and covalently immobilized onto an in situ formed polysaccharide network via water-based free radical graft copolymerization and cross-linking. The synthetic approach was shown to be viable when using a highly purified AcGGM or a crude spruce hydrolysate, an AcGGM and lignin containing biomass fraction as a reactant. Homogeneous reaction mixtures were obtained in both cases with polysaccharide contents up to 20% by weight. Oscillatory shear measurements indicated a predominantly solid-like behavior of the hydrogels with an increase in shear storage modulus with increasing cross-link density. The mechanical integrity of the PAA/hemicellulose hydrogels showed higher water swelling capacity and less fragility than the parent PAA hydrogels and they retained the heavy metal ion absorption ability of the PAA component, even in the presence of the least purified hemicellulose fraction.
addition polymerization; biopolymers and renewable polymers; gels; polysaccharides; properties and characterization
Settore CHIM/04 - Chimica Industriale
mar-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ferrari_JournalAppliedPolymerScience_DesignRenewable_2015.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/371905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 27
social impact